如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.
(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线交于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线与轴的交点为定点,并求该定点的坐标.
(1) (2) ①②
解析试题分析:(1)求椭圆方程,基本方法是待定系数法.关键是找全所需条件. 椭圆中三个未知数的确定只需两个独立条件,由可得值,(2) ①求圆被直线所截得弦长时,利用半径、半弦长、圆心到直线距离三者成勾股列等量关系,先分别确定直线的方程与圆K的方程,②证明直线与轴的交点为定点,实质为求直线与轴的交点.由①知,点是关键点,不妨设点的坐标作为参数,先表示直线的方程,与圆的方程联立解出点P的坐标.由得直线的斜率,从而得直线的方程,再令,得点R的横坐标为,利用点M满足化简得
试题解析:(1)由,解得,故
(2)①因为,所以直线的方程为,
从而的方程为 6分
又直线的方程为,故圆心到直线的距离为 8分
从而截直线所得的弦长为 9分
②证:设,则直线的方程为,则点P的坐标为,
又直线的斜率为,而,
所以,从而直线的方程为 12分
令,得点R的横坐标为 13分
又点M在椭圆上,所以,即,故,
所以直线与轴的交点为定点,且该定点的坐标为 15分
考点:椭圆方程,直线与圆锥曲线位置关系,圆的弦长
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A(x1,y1),B(x2,y2)是椭圆C:=1(a>b>0)上两点,已知m=,n=,若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足+=t (O为坐标原点),当|-|<时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线,点,过的直线交抛物线于两点.
(1)若,抛物线的焦点与中点的连线垂直于轴,求直线的方程;
(2)设为小于零的常数,点关于轴的对称点为,求证:直线过定点
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于,两点,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点.
(1)求抛物线的焦点与椭圆的左焦点的距离;
(2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点的直线与椭圆C相交于A、B两点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,已知抛物线,设点,,为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结、并分别延长交抛物线于点、,连结,设、的斜率存在且分别为、.
(1)若,,,求;
(2)是否存在与无关的常数,是的恒成立,若存在,请将用、表示出来;若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com