已知椭圆C的中心在原点,焦点y在轴上,焦距为
,且过点M
。
(1)求椭圆C的方程;
(2)若过点
的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由。
(1)
(2)存在,![]()
![]()
解析试题分析:(1)用椭圆的定义
可求
,根据焦距
和
可求
;也可将点代入设出的椭圆方程解方程组求
。(2)用点差法求直线
的斜率,设与直线
平行且与椭圆相切的直线方程为
,直线
与椭圆的焦点即为所求点
。
试题解析:(1)(方法一)依题意,设椭圆方程为
, 1分
则
,
2分
因为椭圆两个焦点为
,所以![]()
![]()
="4" 4分![]()
5分
椭圆
的方程为
6分
(方法二)依题意,设椭圆方程为
, 1分
则
,即
,解之得
5分
椭圆C的方程为
6分
(2)如图![]()
(方法一)设
两点的坐标分别为
,
则
7分
①
②
①-②,得
,
9分
设与直线
平行且与椭圆相切的直线方程为![]()
联立方程组
,消去
整理得![]()
由判别式
得
12分
由图知,当
时,
与椭圆的切点为
,此时
的面积最大![]()
所以
点的坐标为
14分
(方法二)设直线
的方程为
,联立方程组
,
消去
整理得
设
两点的坐标分别为
,则![]()
所以直线AB的方程为
,即
9分(以下同法一)
考点:1椭圆方程;2点差法解决中点弦问题;3数形结合。
科目:高中数学 来源: 题型:解答题
已知椭圆
:![]()
的离心率
,原点到过点
,
的直线的距离是
.
(1)求椭圆
的方程;
(2)若椭圆
上一动点![]()
关于直线
的对称点为
,求
的取值范围;
(3)如果直线
交椭圆
于不同的两点
,
,且
,
都在以
为圆心的圆上,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆![]()
的右焦点为
,直线
与
轴交于点
,若
(其中
为坐标原点).
(1)求椭圆
的方程;
(2)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为椭圆
,
的左右焦点,
是坐标原点,过
作垂直于
轴的直线
交椭圆于
,设
.
(1)证明:
成等比数列;
(2)若
的坐标为
,求椭圆
的方程;
(3)在(2)的椭圆中,过
的直线
与椭圆
交于
、
两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=x+
,圆O:x2+y2=5,椭圆E:
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别是椭圆
的左、右焦点.
(1)若
是第一象限内该椭圆上的一点,
,求点
的坐标;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,且
为锐角(其
中
为坐标原点),求直线
的斜率
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,中心在原点O,焦点在x轴上的椭圆C上的点(2
,1)到两焦点的距离之和为4
.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l与椭圆C分别交于A,B两点,其中点A在x轴下方,且
=3
.求过O,A,B三点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A(x1,y1),B(x2,y2)是椭圆C:
=1(a>b>0)上两点,已知m=
,n=
,若m·n=0且椭圆的离心率e=
,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com