精英家教网 > 高中数学 > 题目详情

已知动直线与椭圆交于两不同点,且△的面积=,其中为坐标原点.
(1)证明均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.

(1)证明详见解析;(2);(3)不存在点满足要求.

解析试题分析:(1)先检验直线斜率不存在的情况,后假设直线的方程,利用弦长公式求出的长,利用点到直线的距离公式求点到直线的距离,根据三角形的面积公式,即可求得均为定值;(2)由(1)可求线段的中点的坐标,代入并利用基本不等式求最值;(3)假设存在,使得,由(1)得,从而求得点的坐标,可以求出直线的方程,从而得到结论.
试题解析:(1)当直线的斜率不存在时,P,Q两点关于轴对称,所以
因为在椭圆上,因此  ①
又因为所以
由①、②得,此时     2分
当直线的斜率存在时,设直线的方程为
由题意知,将其代入,得
其中 (*)

所以
因为点到直线的距离为
所以

,整理得,且符合(*)式
此时

综上所述,结论成立         5分
(2)解法一:
(1)当直线的斜率不存在时,由(I)知
因此               6分
(2)当直线的斜率存在时,由(I)知

所以

所以,当且仅当,即时,等号成立
综合(1)(2)得的最大值为             9分
解法二:因为

所以
当且仅当时等号成立
因此的最大值为                   9分
(3)椭圆C上不存在三点,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于PQ两点,且|PQ|=3.
(1)求椭圆的方程;
(2)过F2的直线l与椭圆交于不同的两点MN,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C=1(ab>0)的离心率为,其左、右焦点分别是F1F2,过点F1的直线l交椭圆CEG两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点AB,设P为椭圆上一点,且满足t (O为坐标原点),当||<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.
(1)求抛物线的方程;
(2)过点作直线交抛物线于两点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线在点处的切线垂直相交于点,直线与椭圆相交于两点.

(1)求抛物线的焦点与椭圆的左焦点的距离;
(2)设点到直线的距离为,试问:是否存在直线,使得成等比数列?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2.
(1)求椭圆的方程;
(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的左、右焦点和短轴的一个端点构成边长为4的正三角形.
(1)求椭圆C的方程;
(2)过右焦点的直线与椭圆C相交于A、B两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,过点的直线交抛物线于点.
(Ⅰ)若(点在第一象限),求直线的方程;
(Ⅱ)求证:为定值(点为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(Ⅰ)求椭圆E的方程;
(Ⅱ)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案