精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cosx+sin2
x
2
-
3
2
sinx

(1)求f(x)在x∈[0,π]上的最大值和最小值;
(2)记△ABC的内角A,B,C所对的边分别为a,b,c,若f(B)=0,b=
5
,c=
3
,求a的长度.
函数f(x)=cosx+sin2
x
2
-
3
2
sinx

=cosx+
1
2
(1-cosx)-
3
2
sinx
=
1
2
+
1
2
cosx-
3
2
sinx
=
1
2
+cos(x+
π
3
),
∵x∈[0,π],∴x+
π
3
∈[
π
3
3
],
∴cos(x+
π
3
)∈[-1,
1
2
],
则函数f(x)的最大值为1,最小值为-
1
2

(2)∵f(B)=0,
1
2
+cos(B+
π
3
)=0,即cos(B+
π
3
)=-
1
2

由B为三角形的内角,
得出B+
π
3
=
3
,即B=
π
3
,又b=
5
,c=
3

根据余弦定理得:b2=a2+c2-2accosB,即5=a2+3-
3
a,
解得:a=
3
+
11
2
或a=
3
-
11
2
(舍去),
则a的长度为
3
+
11
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案