精英家教网 > 高中数学 > 题目详情
3.定义域为{x|x∈N*,1≤x≤12}的函数f(x)满足|f(x+1)-f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为176.

分析 根据题意,由|f(x+1)-f(x)|=1分析可得必有在f(x+1)-f(x)=1和f(x+1)-f(x)=-1中,必须且只能有1个成立,由等比数列的性质求得f(4)=±2,进而分2种情况讨论,①、若f(4)=-2,分析可得在1≤x≤3中,f(x+1)-f(x)=-1都成立,在4≤x≤11中,有1个f(x+1)-f(x)=-1,7个f(x+1)-f(x)=1成立,②、若f(4)=2,在1≤x≤3中,有1个f(x+1)-f(x)=-1成立,2个f(x+1)-f(x)=1成立,在4≤x≤11中,有3个f(x+1)-f(x)=-1,5个f(x+1)-f(x)=1成立;由乘法原理计算可得每种情况的函数数目,由分类计数原理计算可得答案.

解答 解:根据题意,若|f(x+1)-f(x)|=1,则f(x+1)-f(x)=1和f(x+1)-f(x)=-1中,
必须且只能有1个成立,
若f(1)=1,f(12)=4,且f(1),f(4),f(12)成等比数列,
则f(4)=±2,
分2种情况讨论:
①、若f(4)=-2,
在1≤x≤3中,f(x+1)-f(x)=-1都成立,
在4≤x≤11中,有1个f(x+1)-f(x)=-1,7个f(x+1)-f(x)=1成立,
则有C81=8种情况,即有8个不同函数;
②、若f(4)=2,
在1≤x≤3中,有1个f(x+1)-f(x)=-1成立,2个f(x+1)-f(x)=1成立,有C31=3种情况,
在4≤x≤11中,有3个f(x+1)-f(x)=-1,5个f(x+1)-f(x)=1成立,有C83=56种情况,
则有3×56=168种情况,即有168个不同函数;
则一共有8+168=176个满足条件的不同函数;
故答案为:176.

点评 本题考查排列、组合的综合应用,涉及函数的定义以及函数值的计算,关键是将函数值的问题转化为排列、组合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$x2,g(x)=elnx
(1)设函数F(x)=f(x)-g(x),求F(x)的单调区间并求最小值;
(2)若存在常数k,m,使得f(x)≥kx+m对x∈R恒成立,且g(x)≤kx+m对x∈(0,+∞)恒成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”,试问:f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和等于${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,求${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$展开式中含$\frac{1}{a}$的项的二项式系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为0.388(结果用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,将函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{sinωx}\\{1}&{cosωx}\end{array}|$(ω>0)的图象向左平移$\frac{2π}{3}$个单位,所得图象对应的函数为奇函数,则ω的最小值是(  )
A.$\frac{1}{2}$B.$\frac{5}{4}$C.2D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)离心率为$\frac{1}{2}$,过点$E(-\sqrt{7},0)$的椭圆的两条切线相互垂直.
(1)求此椭圆的方程;
(2)若存在过点(t,0)的直线l交椭圆于A,B两点,使得FA⊥FB(F为右焦点),求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱锥D-ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的取值范围为(  )
A.[2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$]B.[2,$\frac{8}{3}$]C.[0,$\frac{2\sqrt{13}}{3}$]D.[2,$\frac{2\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$g(x)={e^{1+{x^2}}}-\frac{1}{{1+{x^2}}}+|x|$,则使得g(x-1)>g(3x+1)成立的x的取值范围是(-1,0).

查看答案和解析>>

同步练习册答案