精英家教网 > 高中数学 > 题目详情
8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)离心率为$\frac{1}{2}$,过点$E(-\sqrt{7},0)$的椭圆的两条切线相互垂直.
(1)求此椭圆的方程;
(2)若存在过点(t,0)的直线l交椭圆于A,B两点,使得FA⊥FB(F为右焦点),求t的范围.

分析 (1)由椭圆的离心率公式,求得a=2c,b2=a2-c2=2c2,由函数的对称性可知:ME的直线方程为y=x+1,代入椭圆方程,由△=0,即可求得c值,即可求得a和b,求得椭圆方程;
(2)设l的方程,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得t的范围.

解答 解:(1)由题意的椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,b2=a2-c2=2c2
由椭圆的对称性,不妨设在x轴上方的切点为M,x轴下方的切点为N,则kME=1,ME的直线方程为y=x+1,
所以$\left\{{\begin{array}{l}{y=x+\sqrt{7}}\\{\frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1}\end{array}}\right.$,整理得:7x2+8$\sqrt{7}$x+28-12c2=0
△=(8$\sqrt{7}$)2-4×7×(28-12c2)=0,解得:c=1,
∴∴椭圆方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(2)设l的方程为x=my+t,A(x1,y1),B(x2,y2),
则$\left\{{\begin{array}{l}{my+t=x}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,(3m2+4)y2+6mty+3t2-12=0,
${y_1}+{y_2}=\frac{-6mt}{{3{m^2}+4}},{y_1}{y_2}=\frac{{3{t^2}-12}}{{3{m^2}+4}}$$\overrightarrow{FA}=({x_1}-1,{y_1})$,
$\overrightarrow{FB}=({x_2}-1,{y_2})$,$\overrightarrow{FA}$•$\overrightarrow{FB}$=(x2-1)(x1-1)+y1y2=x1x2-(x1+x2)+1+y1y2
=$({m^2}+1){y_1}{y_2}+(mt-m)({y_1}+{y_2})+{t^2}-2t+1=0$,
∴7t2-8t-8=9m2有解,
∴7t2-8t-8≥0,则$t≥\frac{{4+6\sqrt{2}}}{7}$或$t≤\frac{{4-6\sqrt{2}}}{7}$.
∴t的范围(-∞,$\frac{4-6\sqrt{2}}{7}$]∪[$\frac{4+6\sqrt{2}}{7}$,+∞).

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,AC=$\sqrt{2},BC=\sqrt{6}$,∠ACB=$\frac{π}{6}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示,则y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)证明:f(x)≥4
(II)若f(1)>5,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义域为{x|x∈N*,1≤x≤12}的函数f(x)满足|f(x+1)-f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为176.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2017年春晚过后,为了研究演员上春晚次数与受关注度的关系,某网站对其中一位经常上春晚的演员上春晚次数与受关注度进行了统计,得到如下数据:
上春晚次数x(单位:次)246810
粉丝数量y(单位:万人)10204080100
(1)若该演员的粉丝数量g(x)≤g(1)=0与上春晚次数x满足线性回归方程,试求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并就此分析,该演员上春晚12次时的粉丝数量;
(2)若用$\frac{{y}_{i}}{{x}_{i}}$(i=1,2,3,4,5)表示统计数据时粉丝的“即时均值”(四舍五入,精确到整数),从这5个“即时均值”中任选2数,记所选的2数之和为随机变量η,求η的分布列与数学期望.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x2-$\sqrt{\frac{2}{x}}$)5的展开式中常数项为20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.极坐标系中椭圆C的方程为ρ2=$\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$,以极点为原点,极轴为x轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(1)若椭圆上任一点坐标为P(x,y),求${x^2}+\sqrt{2}xy$的取值范围;
(2)若椭圆的两条弦AB,CD交于点Q,且直线AB与CD的倾斜角互补,求证:|QA|•|QB|=|QC|•|QD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个焦点为F(1,0),离心率为$\frac{{\sqrt{2}}}{2}$,过点F的动直线交M于A,B两点,若x轴上的点P(t,0)使得∠APO=∠BPO总成立(O为坐标原点),则t=(  )
A.2B.$\sqrt{2}$C.$-\sqrt{2}$D.-2

查看答案和解析>>

同步练习册答案