分析 在二项式的展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式中常数项.
解答 解:(x2-$\sqrt{\frac{2}{x}}$)5的展开式的通项公式为Tr+1=${C}_{5}^{r}$(x2)5-r•(-$\sqrt{\frac{2}{x}}$)r=(-1)r•($\sqrt{2}$)r•${C}_{5}^{r}$•${x}^{10-2r-\frac{r}{2}}$,
令$\frac{20-5r}{2}$=0,求得r=4,可得展开式中常数项为${C}_{5}^{4}•(\sqrt{2})^{4}$=20,
故答案为:20.
点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 528 | B. | 1020 | C. | 1038 | D. | 1040 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$] | B. | [2,$\frac{8}{3}$] | C. | [0,$\frac{2\sqrt{13}}{3}$] | D. | [2,$\frac{2\sqrt{13}}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | $-\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com