精英家教网 > 高中数学 > 题目详情
10.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记an为图中第n行各个数之和,则a5+a11的值为(  )
A.528B.1020C.1038D.1040

分析 根据前4行可得,第n行数字之和为2n-1,代值计算即可.

解答 解:第一行数字之和为1=21-1
第二行数字之和为2=22-1
第三行数字之和为4=23-1
第四行数字之和为8=24-1

第n行数字之和为2n-1
∴a5+a11=24+210=16+1024=1040
故选:D

点评 本题考查了归纳推理的问题,关键找到规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,O为坐标原点,以F为圆心,$2\sqrt{3}a$为半径的圆与双曲线C的一条渐近线交于P、Q两点,且$\overrightarrow{FP}$•$\overrightarrow{FQ}$=-6a2,若$\overrightarrow{OP}=λ\overrightarrow{OQ}$,则λ=-2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-a|+|x+1|(x∈R).
(Ⅰ)当a=1时,解不等式f(x)≥3;
(Ⅱ)若不等式f(x)≥$\frac{|2m+1|-|1-m|}{|m|}$对任意实数x与任意非零实数m都恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,AC=$\sqrt{2},BC=\sqrt{6}$,∠ACB=$\frac{π}{6}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(Ⅰ)求实数m,n的值;
(Ⅱ)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{f(a)+f(b)}{2}$,$C=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B,C三者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦点F1,F2,设M为C1与C2在第一象限内的交点,|F1F2|=2c.则(  )
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)+x>0;
(Ⅱ)若关于x的不等式f(x)≤a2-2a在R上的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示,则y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x2-$\sqrt{\frac{2}{x}}$)5的展开式中常数项为20.

查看答案和解析>>

同步练习册答案