分析 (Ⅰ)分x>1,-1≤x≤1,x<-1三种情况取绝对值解不等式即可;
(Ⅱ)由$\frac{|2m+1|-|1-m|}{|m|}$≤$\frac{|2m+1-1+m|}{|m|}=3$,得|a+1|≥3,解得a≥2或a≤-4即可.
解答 解:(Ⅰ)当a=1时,不等式f(x)≥3?|x-1+|x+1|≥3.
当x>1时,f(x)=2x≥3,解得≥$\frac{3}{2}$;
当-1≤x≤1时,f(x)=2≥3,不等式无解.
当x<-1时,f(x)=-2x≥3,解得x≤-$\frac{3}{2}$;
综上所述,不等式解集为(-∞,-$\frac{3}{2}$]∪[$\frac{3}{2}$,+∞).
(Ⅱ)∵$\frac{|2m+1|-|1-m|}{|m|}$≤$\frac{|2m+1-1+m|}{|m|}=3$,
又f(x)=|x-a|+|x+1|≥|(x-a)-(x+1)|=|a+1|
∴|a+1|≥3,解得a≥2或a≤-4.
即a的取值范围为:(-∞,-4]∪[2,+∞)
点评 本题考查了绝对值不等式的解法,绝对值不等式的性质,属于中档题,
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 6 | 6 | 9 | 9 |
| 乙 | 7 | 9 | x | y |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 528 | B. | 1020 | C. | 1038 | D. | 1040 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com