精英家教网 > 高中数学 > 题目详情
6.如图所示,若a=-4,则输出结果是(  )
A.是正数B.是负数C.-4D.16

分析 模拟程序的运行过程,根据a的值分类讨论即可计算得解.

解答 解:模拟程序的运行,可得
a=-4,
不满足条件a≥0,执行语句,输出“是负数”,结束.
故选:B.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.20世纪70年代,流行一种游戏---角谷猜想,规则如下:任意写出一个自然数n,按照以下的规律进行变换:如果n是个奇数,则下一步变成3n+1;如果n是个偶数,则下一步变成$\frac{n}{2}$,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确的说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i值为6,则输入的n值为(  )
A.5B.16C.5或32D.4或5或32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos2$\frac{x}{2}$-sin$\frac{x}{2}$cos$\frac{x}{2}$-$\frac{1}{2}$.
(1)求函数f(x)的最小正周期和值域 
(2)求函数单调递减区间
(3)若f(α)=$\frac{{3\sqrt{2}}}{10}$,求sin 2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则输出S的值为(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{6}{7}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-a|+|x+1|(x∈R).
(Ⅰ)当a=1时,解不等式f(x)≥3;
(Ⅱ)若不等式f(x)≥$\frac{|2m+1|-|1-m|}{|m|}$对任意实数x与任意非零实数m都恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.袋中装有大小相同的4个红球和6个白球,从中取出4个球.
(1)若取出的球必须是两种颜色,则有多少种不同的取法?
(2)若取出的红球个数不少于白球个数,则有多少种不同的取法?
(3)取出一个红球记2分,取出一个白球记1分,若取4球的总分不低于5分,则有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,AC=$\sqrt{2},BC=\sqrt{6}$,∠ACB=$\frac{π}{6}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦点F1,F2,设M为C1与C2在第一象限内的交点,|F1F2|=2c.则(  )
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=|x-$\frac{4}{m}$|+|x+m|,(m>0)
(I)证明:f(x)≥4
(II)若f(1)>5,求m的取值范围.

查看答案和解析>>

同步练习册答案