精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)+x>0;
(Ⅱ)若关于x的不等式f(x)≤a2-2a在R上的解集为R,求实数a的取值范围.

分析 (Ⅰ)通过讨论x的范围求出各个区间上的不等式的解集,取并集即可;(Ⅱ)根据绝对值的性质,得到关于a的不等式,解出即可.

解答 解:(Ⅰ)不等式f(x)+x>0可化为|x-2|+x>|x+1|,
当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;
当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;
当x>2时,x-2+x>x+1,解得:x>3,即x>3,
综上所述,不等式f(x)+x>0的解集为{x|-3<x<1或x>3}.…(5分)
(Ⅱ)由不等式f(x)≤a2-2a,
可得|x-2|-|x+1|≤a2-2a,
∵|x-2|-|x+1|≤|x-2-x-1|=3,
∴a2-2a≥3,即a2-2a-3≥0,解得a≤-1或a≥3,
故实数a的取值范围是a≤-1或a≥3.…(10分)

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.一个均速旋转的摩天轮每12分钟逆时针旋转一周,最低点距地面2米,最高点距地面18米,甲从摩天轮最低点处上摩天轮,3分钟后乙也在其最低点处上摩天轮,从乙上摩天轮开始计时,在摩天轮转动的一圈内,有3分钟,甲、乙距地面的高度之和不小于28米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$x2,g(x)=elnx
(1)设函数F(x)=f(x)-g(x),求F(x)的单调区间并求最小值;
(2)若存在常数k,m,使得f(x)≥kx+m对x∈R恒成立,且g(x)≤kx+m对x∈(0,+∞)恒成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”,试问:f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记an为图中第n行各个数之和,则a5+a11的值为(  )
A.528B.1020C.1038D.1040

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A(-2,0),离心率为$\frac{\sqrt{2}}{2}$,过A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴为E,过点O作直线l的平行线交椭圆于点G,设△AOD,△AOE,△DOG的面积分别为S1、S2、S3
(1)求椭圆C的方程;
(2)若S1+S2=3S3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知二项式${(\root{3}{x^2}+\frac{1}{x})^n}$的展开式中含有x2的项是第3项,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和等于${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,求${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$展开式中含$\frac{1}{a}$的项的二项式系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为0.388(结果用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的取值范围为(  )
A.[2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$]B.[2,$\frac{8}{3}$]C.[0,$\frac{2\sqrt{13}}{3}$]D.[2,$\frac{2\sqrt{13}}{3}$]

查看答案和解析>>

同步练习册答案