精英家教网 > 高中数学 > 题目详情
14.已知${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和等于${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,求${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$展开式中含$\frac{1}{a}$的项的二项式系数.

分析 令a=1求得${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和,
由二项展开式的通项公式求得${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,
从而求得n的值,再计算${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^7}$展开式中$含\frac{1}{a}$项的二项式系数.

解答 解:令a=1得${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和为2n,…(2分)
由二项展开式的通项公式得
${T_{r+1}}=C_5^r{(4\root{3}{b})^{5-r}}{(-\frac{1}{{\sqrt{5b}}})^r}=C_5^r{4^{5-r}}{(-\frac{1}{{\sqrt{5}}})^r}b_{\;}^{\frac{10-5r}{6}}$,
令10-5r=0,解得r=2,…(4分)
所以${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$的展开式中的常数项是第3项,
即${T_3}=C_5^2{4^3}{(-\frac{1}{{\sqrt{5}}})^2}={2^7}$,
由2n=27得n=7;…(8分)
对于${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^7}$,由二项展开式的通项公式得
${T_{r+1}}=C_7^r{(\frac{3}{{\sqrt{a}}})^{7-r}}{(-\root{3}{a})^r}={(-1)^r}C_7^r{3^{7-r}}a_{\;}^{\frac{5r-21}{6}}$,
所以$含\frac{1}{a}$的项是第4项,其二项式系数是$C_7^3=35$.…(12分)

点评 本题考查了二项式定理的应用问题,也考查了二项式系数与常数项的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如下等式:

以此类推,则2018出现在第31个等式中.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(Ⅰ)求实数m,n的值;
(Ⅱ)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{f(a)+f(b)}{2}$,$C=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B,C三者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)+x>0;
(Ⅱ)若关于x的不等式f(x)≤a2-2a在R上的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出的a,b的值分别等于(  )
A.32,$-\frac{{\sqrt{2}}}{6}-\frac{1}{3}$B.32,$\frac{{\sqrt{2}}}{6}+\frac{1}{3}$C.8,$-\frac{{\sqrt{2}}}{2}-1$D.32,$\frac{{\sqrt{2}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示,则y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.
晋级成功晋级失败合计
16
50
合计
(Ⅰ)求图中a的值;
(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).
(参考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k00.400.250.150.100.050.025
k00.7801.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义域为{x|x∈N*,1≤x≤12}的函数f(x)满足|f(x+1)-f(x)|=1(x=1,2,…11),且f(1),f(4),f(12)成等比数列,若f(1)=1,f(12)=4,则满足条件的不同函数的个数为176.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,角θ的终边经过点P(x,1)(x≥1),则cosθ+sinθ的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案