6£®Ä³Ö°³Æ½ú¼¶ÆÀ¶¨»ú¹¹¶Ô²Î¼Óij´Îרҵ¼¼Êõ¿¼ÊÔµÄ100È˵ijɼ¨½øÐÐÁËͳ¼Æ£¬»æÖÆÁËÆµÂÊ·Ö²¼Ö±·½Í¼£¨ÈçͼËùʾ£©£¬¹æ¶¨80·Ö¼°ÒÔÉÏÕß½ú¼¶³É¹¦£¬·ñÔò½ú¼¶Ê§°Ü£®
½ú¼¶³É¹¦½ú¼¶Ê§°ÜºÏ¼Æ
ÄÐ16
Ů50
ºÏ¼Æ
£¨¢ñ£©ÇóͼÖÐaµÄÖµ£»
£¨¢ò£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÄÜ·ñÓÐ85%µÄ°ÑÎÕÈÏΪ¡°½ú¼¶³É¹¦¡±ÓëÐÔ±ðÓйأ¿
£¨¢ó£©½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬´Ó±¾´Î¿¼ÊÔµÄËùÓÐÈËÔ±ÖУ¬Ëæ»ú³éÈ¡4È˽øÐÐԼ̸£¬¼ÇÕâ4ÈËÖнú¼¶Ê§°ÜµÄÈËÊýΪX£¬ÇóXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍûE£¨X£©£®
£¨²Î¿¼¹«Ê½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©
P£¨K2¡Ýk0£©0.400.250.150.100.050.025
k00.7801.3232.0722.7063.8415.024

·ÖÎö £¨¢ñ£©ÓÉÆµÂʺÍΪ1£¬Áгö·½³ÌÇóaµÄÖµ£»
£¨¢ò£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Çó³ö½ú¼¶³É¹¦µÄƵÂÊ£¬¼ÆËã½ú¼¶³É¹¦µÄÈËÊý£¬
ÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨¢ó£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Öª½ú¼¶Ê§°ÜµÄƵÂÊ£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬
ÖªËæ»ú±äÁ¿X·þ´Ó¶þÏî·Ö²¼£¬¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊÖµ£¬Ð´³ö·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍû£»

½â´ð ½â£º£¨¢ñ£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¸÷С³¤·½ÐÎÃæ»ý×ܺÍΪ1£¬
¿ÉÖª£¨2a+0.020+0.030+0.040£©¡Á10=1£¬
½âµÃa=0.005£»
£¨¢ò£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Öª£¬½ú¼¶³É¹¦µÄƵÂÊΪ0.20+0.05=0.25£¬
ËùÒÔ½ú¼¶³É¹¦µÄÈËÊýΪ100¡Á0.25=25£¨ÈË£©£¬
Ìî±íÈçÏ£º

½ú¼¶³É¹¦½ú¼¶Ê§°ÜºÏ¼Æ
ÄÐ163450
Ů94150
ºÏ¼Æ2575100
¼ÙÉè¡°½ú¼¶³É¹¦¡±ÓëÐÔ±ðÎ޹أ¬
¸ù¾ÝÉϱíÊý¾Ý´úÈ빫ʽ¿ÉµÃ${K^2}=\frac{{100¡Á{{£¨16¡Á41-34¡Á9£©}^2}}}{25¡Á75¡Á50¡Á50}¡Ö2.613£¾2.072$£¬
ËùÒÔÓг¬¹ý85%µÄ°ÑÎÕÈÏΪ¡°½ú¼¶³É¹¦¡±ÓëÐÔ±ðÓйأ»
£¨¢ó£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼Öª½ú¼¶Ê§°ÜµÄƵÂÊΪ1-0.25=0.75£¬
½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬Ôò´Ó±¾´Î¿¼ÊÔµÄËùÓÐÈËÔ±ÖУ¬Ëæ»ú³éÈ¡1È˽øÐÐԼ̸£¬
ÕâÈ˽ú¼¶Ê§°ÜµÄ¸ÅÂÊΪ0.75£¬
ËùÒÔX¿ÉÊÓΪ·þ´Ó¶þÏî·Ö²¼£¬¼´$X¡«B£¨4£¬\frac{3}{4}£©$£¬
$P£¨X=k£©=C_4^k{£¨\frac{3}{4}£©^k}{£¨\frac{1}{4}£©^{4-k}}£¨k=0£¬1£¬2£¬3£©$£¬
¹Ê$P£¨X=0£©=C_4^0{£¨\frac{3}{4}£©^0}{£¨\frac{1}{4}£©^4}=\frac{1}{256}$£¬
$P£¨X=1£©=C_4^1{£¨\frac{3}{4}£©^1}{£¨\frac{1}{4}£©^3}=\frac{3}{64}$£¬
$P£¨X=2£©=C_4^2{£¨\frac{3}{4}£©^2}{£¨\frac{1}{4}£©^2}=\frac{54}{256}$£¬
$P£¨X=3£©=C_4^3{£¨\frac{3}{4}£©^3}{£¨\frac{1}{4}£©^1}=\frac{108}{256}$£¬
$P£¨X=4£©=C_4^4{£¨\frac{3}{4}£©^4}{£¨\frac{1}{4}£©^0}=\frac{81}{256}$£¬
ËùÒÔXµÄ·Ö²¼ÁÐΪ
X01234
P£¨X=k£©$\frac{1}{256}$$\frac{3}{64}$$\frac{54}{256}$$\frac{108}{256}$$\frac{81}{256}$
ÊýѧÆÚÍûΪ$E£¨X£©=4¡Á\frac{3}{4}=3$£¬
»ò£¨$E£¨X£©=\frac{1}{256}¡Á0+\frac{3}{64}¡Á1+\frac{54}{256}¡Á2+\frac{108}{256}¡Á3+\frac{81}{256}¡Á4=3$£©£®

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼Óë¶ÀÁ¢ÐÔ¼ìÑéºÍÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÉèµÈ±ÈÊýÁÐ{an}ÖУ¬Ç°nÏîºÍΪSn£¬ÒÑÖªS3=8£¬S6=4£¬ÔòS12=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¶¥µãΪA£¨-2£¬0£©£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýA×÷бÂÊΪk£¨k¡Ù0£©µÄÖ±Ïßl½»ÍÖÔ²CÓÚµãD£¬½»yÖáΪE£¬¹ýµãO×÷Ö±ÏßlµÄƽÐÐÏß½»ÍÖÔ²ÓÚµãG£¬Éè¡÷AOD£¬¡÷AOE£¬¡÷DOGµÄÃæ»ý·Ö±ðΪS1¡¢S2¡¢S3£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôS1+S2=3S3£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª${£¨{\frac{3}{{\sqrt{a}}}-\root{3}{a}}£©^n}$µÄÕ¹¿ªÊ½µÄ¸÷ÏîϵÊýÖ®ºÍµÈÓÚ${£¨{4\root{3}{b}-\frac{1}{{\sqrt{5b}}}}£©^5}$Õ¹¿ªÊ½Öеij£ÊýÏÇó${£¨{\frac{3}{{\sqrt{a}}}-\root{3}{a}}£©^n}$Õ¹¿ªÊ½Öк¬$\frac{1}{a}$µÄÏîµÄ¶þÏîʽϵÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÓɰëÔ²x2+y2=r2£¨y¡Ü0£¬r£¾0£©ºÍ²¿·ÖÅ×ÎïÏßy=a£¨x2-1£©£¨y¡Ý0£¬a£¾0£©ºÏ³ÉµÄÇúÏßC³ÆÎª¡°ÓðëÇòÐÎÏß¡±£¬ÇúÏßCÓëxÖáÓÐA¡¢BÁ½¸ö½¹µã£¬ÇÒ¾­¹ýµã£¨2.3£©£®
£¨1£©Çóa¡¢rµÄÖµ£»
£¨2£©ÉèN£¨0£¬2£©£¬MΪÇúÏßCÉϵ͝µã£¬Çó|MN|µÄ×îСֵ£»
£¨3£©¹ýAÇÒбÂÊΪkµÄÖ±ÏßlÓë¡°ÓðëÇòÐÎÏß¡±ÏཻÓÚP£¬A£¬QÈýµã£¬ÎÊÊÇ·ñ´æÔÚʵÊýk£¬Ê¹µÃ¡ÏQBA=¡ÏPBA£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ò»Ãû¹¤ÈËά»¤3̨¶ÀÁ¢µÄÓÎÏ·»ú£¬Ò»ÌìÄÚ3̨ÐèҪά»¤µÄ¸ÅÂÊ·Ö±ðΪ0.9¡¢0.8ºÍ0.85£¬ÔòÒ»ÌìÄÚÖÁÉÙÓÐһ̨ÓÎÏ·»ú²»ÐèҪά»¤µÄ¸ÅÂÊΪ0.388£¨½á¹ûÓÃСÊý±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¶¨ÒåÔËË㣺$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3£¬½«º¯Êýf£¨x£©=$|\begin{array}{l}{\sqrt{3}}&{sin¦Øx}\\{1}&{cos¦Øx}\end{array}|$£¨¦Ø£¾0£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýÎªÆæº¯Êý£¬Ôò¦ØµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{5}{4}$C£®2D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÕýÈýÀâ×¶D-ABC²àÀâÁ½Á½´¹Ö±£¬EΪÀâADÖÐµã£¬Æ½Ãæ¦Á¹ýµãA£¬ÇÒ¦Á¡ÎÆ½ÃæEBC£¬¦Á¡ÉÆ½ÃæABC=m£¬¦Á¡ÉÆ½ÃæACD=n£¬Ôòm£¬nËù³É½ÇµÄÓàÏÒÖµÊÇ$\frac{\sqrt{10}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ax-e£¨x+1£©lna-$\frac{1}{a}$£¨a£¾0£¬ÇÒa¡Ù1£©£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©µ±a=eʱ£¬Çóº¯Êýy=f£¨x£©ÔÚÇø¼äx¡Ê[0£¬2]ÉϵÄ×î´óÖµ
£¨2£©Èôº¯Êýf£¨x£©Ö»ÓÐÒ»¸öÁãµã£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸