分析 利用面面平行的性质可得m∥BC,n∥CE,故∠BCE即为所求角,设棱锥侧棱长为1,利用余弦定理计算cos∠BCE.
解答
解:∵α∥平面EBC,α∩平面ABC=m,平面EBC∩平面ABC=BC,
∴m∥BC,
同理可得:n∥CE,
∴∠BCE为直线m,n所成的角.
设正三棱锥的侧棱为1,则BC=$\sqrt{2}$,CE=BE=$\frac{\sqrt{5}}{2}$,
在△BCE中,由余弦定理得:cos∠BCE=$\frac{\frac{5}{4}+2-\frac{5}{4}}{2•\frac{\sqrt{5}}{2}•\sqrt{2}}$=$\frac{\sqrt{10}}{5}$.
故答案为:$\frac{{\sqrt{10}}}{5}$.
点评 本题考查了面面平行的性质,空间角的计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 晋级成功 | 晋级失败 | 合计 | |
| 男 | 16 | ||
| 女 | 50 | ||
| 合计 |
| P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{8}$ | B. | $-\frac{7}{8}$ | C. | $-\frac{5}{8}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com