精英家教网 > 高中数学 > 题目详情
8.在平面直角坐标系xOy中,角θ的终边经过点P(x,1)(x≥1),则cosθ+sinθ的取值范围是(1,$\sqrt{2}$].

分析 法一:直接利用任意角的三角函数结合不等式的性质,求解即可.
法二:利用辅助角公式化简结合三角函数的性质,求解即可.

解答 解:法一:
角θ的终边经过点P(x,1)(x≥1),
∴r=$\sqrt{{x}^{2}+1}$,
cosθ=$\frac{x}{r}$=$\frac{x}{\sqrt{{x}^{2}+1}}$.sinθ=$\frac{y}{r}$=$\frac{1}{\sqrt{{x}^{2}+1}}$,
∴cosθ+sinθ=$\frac{x}{\sqrt{{x}^{2}+1}}$+$\frac{1}{\sqrt{{x}^{2}+1}}$=$\frac{x+1}{\sqrt{{x}^{2}+1}}$=$\sqrt{\frac{(x+1)^{2}}{{x}^{2}+1}}$=$\sqrt{\frac{{x}^{2}+2x+1}{{x}^{2}+1}}$=$\sqrt{1+\frac{2x}{{x}^{2}+1}}$=$\sqrt{1+\frac{2}{x+\frac{1}{x}}}$.
∵$x+\frac{1}{x}≥2$,当且仅当x=1时取等号.
$\frac{2}{x+\frac{1}{x}}>0$,
∴1<cosθ+sinθ≤$\sqrt{2}$.
故得cosθ+sinθ的取值范围是(1,$\sqrt{2}$].
法二:由题意,令f(θ)=cosθ+sinθ=$\sqrt{2}$sin($θ+\frac{π}{4}$),
当θ=$\frac{π}{4}$时,f(θ)取得最大值为$\sqrt{2}$,此时P(1,1).
∵x≥1,
∴0<tanθ=$\frac{y}{x}≤1$,即$0<θ≤\frac{π}{4}$,
∴sin($θ+\frac{π}{4}$)∈($\frac{\sqrt{2}}{2},1$].
得cosθ+sinθ的取值范围是(1,$\sqrt{2}$].
故答案为:(1,$\sqrt{2}$].

点评 本题考查任意角的三角函数的定义的运用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和等于${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,求${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$展开式中含$\frac{1}{a}$的项的二项式系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱锥D-ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的取值范围为(  )
A.[2,$\frac{2\sqrt{10+3\sqrt{3}}}{3}$]B.[2,$\frac{8}{3}$]C.[0,$\frac{2\sqrt{13}}{3}$]D.[2,$\frac{2\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知以O为中心的双曲线C的一个焦点为F,P为C上一点,M为PF的中点,若△OMF为等腰直角三角形,则C的离心率等于(  )
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$2+\sqrt{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程sin2πx-$\frac{2}{2x-1}$=0(x∈[-2,3])所有根之和为(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$g(x)={e^{1+{x^2}}}-\frac{1}{{1+{x^2}}}+|x|$,则使得g(x-1)>g(3x+1)成立的x的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用线性回归模型求得甲、乙、丙3组不同的数据对应的R2的值分别为0.81,0.98,0.63,其中乙(填甲、乙、丙中的一个)组数据的线性回归的效果最好.

查看答案和解析>>

同步练习册答案