精英家教网 > 高中数学 > 题目详情
18.用线性回归模型求得甲、乙、丙3组不同的数据对应的R2的值分别为0.81,0.98,0.63,其中乙(填甲、乙、丙中的一个)组数据的线性回归的效果最好.

分析 根据两个变量y与x的回归模型中,它们的相关指数R2越接近于1,这个模型的拟合效果越好,由此得出答案.

解答 解:两个变量y与x的回归模型中,它们的相关指数R2越接近于1,
这个模型的拟合效果就越好,
在甲、乙、丙中,所给的数值中0.98是相关指数最大的值,
即乙的拟合效果最好.
故答案为:乙.

点评 本题考查了相关指数的应用问题,解题的关键是理解相关指数越大其拟合效果越好.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,角θ的终边经过点P(x,1)(x≥1),则cosθ+sinθ的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$sin(\frac{π}{3}-α)=\frac{1}{4}$,则$cos(\frac{π}{3}+2α)$=(  )
A.$\frac{5}{8}$B.$-\frac{7}{8}$C.$-\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sin(2x+φ)+2sin2x(|φ|<$\frac{π}{2}$)的图象过点($\frac{π}{6}$,$\frac{3}{2}$).
(1)求函数f(x)在[0,$\frac{π}{2}$]的最小值;
(2)设角C为锐角,△ABC的内角A、B、C的对边长分别为a、b、c,若x=C是曲线y=f(x)的一条对称轴,且△ABC的面积为2$\sqrt{3}$,a+b=6,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x+y-4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(x-2)2+(y-2)2=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{3}$,cos$\frac{x}{3})$,$\overrightarrow{n}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若函数f(x)的最小正周期和单调递增区间;
(2)若a,b,c分别是△ABC的内角A,B,C所对的边,且a=2,(2a-b)cosC=ccosB,$f(A)=\frac{3}{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆C1与双曲线C2有相同的左右焦点F1、F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1,e2,且$\frac{{e}_{1}}{{e}_{2}}$=$\frac{1}{3}$,若∠F1PF2=$\frac{π}{3}$,则双曲线C2的渐近线方程为(  )
A.x±y=0B.x±$\frac{\sqrt{3}}{3}$y=0C.x±$\frac{\sqrt{2}}{2}$y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,点E在CD上,DE=2EC.
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若二面角E-BA-D的余弦值为$\frac{{\sqrt{15}}}{5}$,求三棱锥A-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow a=(cosα,sinα),\overrightarrow b=(cos(-α),sin(-α))$,那么$\overrightarrow a•\overrightarrow b=0$是α=kπ+$\frac{π}{4}$(k∈Z)的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案