精英家教网 > 高中数学 > 题目详情
3.已知以O为中心的双曲线C的一个焦点为F,P为C上一点,M为PF的中点,若△OMF为等腰直角三角形,则C的离心率等于(  )
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$2+\sqrt{2}$D.$\frac{\sqrt{5}+1}{2}$

分析 根据题意,作出双曲线的图形,设双曲线的另一个焦点为G,且PG=2c,分析可得△GPF也是等腰直角三角形,进而分析可得|PG|=|GF|=2c,|PF|=2$\sqrt{2}$c,由双曲线的定义可得2a=||PF|-|PG||=(2$\sqrt{2}$-2)c,由双曲线的离心率公式计算可得答案.

解答 解:根据题意,如图:设双曲线的另一个焦点为G,设PG=2c,
O为FG的中点,M为PF的中点,则OM为三角形PFG的中位线,
故△OMF∽△GPF,
故△GPF也是等腰直角三角形,
分析有|PG|=|GF|=2c,
则|PF|=2$\sqrt{2}$c,
则2a=||PF|-|PG||=(2$\sqrt{2}$-2)c,
该双曲线的离心率e=$\frac{c}{a}$=$\frac{2}{2\sqrt{2}-2}$=$\sqrt{2}$+1;
故选:B.

点评 本题考查双曲线的几何性质,关键是依据题意找到a,c之间的等量关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出的a,b的值分别等于(  )
A.32,$-\frac{{\sqrt{2}}}{6}-\frac{1}{3}$B.32,$\frac{{\sqrt{2}}}{6}+\frac{1}{3}$C.8,$-\frac{{\sqrt{2}}}{2}-1$D.32,$\frac{{\sqrt{2}}}{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线$l:y=\sqrt{3}x-2\sqrt{3}$过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F2,且椭圆C的中心关于直线l的对称点在直线$x=\frac{a^2}{c}$(其中2c为焦距)上,直线m过椭圆左焦点F1交椭圆C于M、N两点.
(1)求椭圆C的方程;
(2)设$\overrightarrow{OM}•\overrightarrow{ON}=\frac{2λ}{tan∠MON}≠0$(O为坐标原点),当直线m绕点F1转动时,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.命题$?{x_0}∈R,{x_0}^2-2{x_0}+4>0$的否定是?x∈R,x2-2x+4≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若动直线x=t(t∈R)与函数f(x)=cos2($\frac{π}{4}$-x),g(x)=$\sqrt{3}$sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x)的图象分别交于P、Q两点,则线段PQ长度的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,角θ的终边经过点P(x,1)(x≥1),则cosθ+sinθ的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=4+t\\ y=3t+6\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρtanθ=\frac{8}{sinθ}$.

(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正整数λ,μ为常数,且λ≠1,无穷数列{an}的各项均为正整数,其前n项和为Sn,且Sn=λan-μ.n∈N*.记数列{an}中任意不同两项的和构成的集合为A.
(1)求证:数列{an}为等比数列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)已知m≥1,求集合{x|3μ•2n-1<x<3μ•2n,x∈A}的元素个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x+y-4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B三点的圆的标准方程为(x-2)2+(y-2)2=8.

查看答案和解析>>

同步练习册答案