精英家教网 > 高中数学 > 题目详情
18.若动直线x=t(t∈R)与函数f(x)=cos2($\frac{π}{4}$-x),g(x)=$\sqrt{3}$sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x)的图象分别交于P、Q两点,则线段PQ长度的最大值为$\frac{3}{2}$.

分析 利用三角函数的二倍角公式化简f(x)和g(x),|PQ|=|f(t)-g(t)|,即求=|f(t)-g(t)|的最大值.

解答 解:函数f(x)=cos2($\frac{π}{4}$-x)=$\frac{1}{2}$$+\frac{1}{2}$cos($\frac{π}{2}-2x$)=$\frac{1}{2}$sin2x+$\frac{1}{2}$;
函数g(x)=$\sqrt{3}$sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x)=$\frac{\sqrt{3}}{2}$sin(2x+$\frac{π}{2}$)=$\frac{\sqrt{3}}{2}$cos2x.
由题意,|PQ|=|f(t)-g(t)|,即|PQ|=$\frac{1}{2}$sin2t+$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$cos2t|=|sin(2t-$\frac{π}{3}$)$+\frac{1}{2}$|.
当sin(2t-$\frac{π}{3}$)取得最大值时,可得|PQ|的最大值.
∴|PQ|的最大值为1+$\frac{1}{2}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了三角函数的二倍角公式化简计算能力和三角函数图象性质的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.运行如下程序框图,如果输入的t∈[0,5],则输出S属于(  )
A.[-4,10)B.[-5,2]C.[-4,3]D.[-2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示某物体的三视图,则求该物体的体积为(  )
A.$8-\frac{5π}{12}$B.$8-\frac{π}{3}$C.$8-\frac{π}{2}$D.$8-\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x+1)=x2-2x
(1)求函数f(x)的解析式;
(2)若函数f(x)在x∈[0,5]时.关于x的方程f(x)=k总有实数解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P在函数f(x)=xex的图象上.
(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;
(II)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知以O为中心的双曲线C的一个焦点为F,P为C上一点,M为PF的中点,若△OMF为等腰直角三角形,则C的离心率等于(  )
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$2+\sqrt{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个几何体的三视图,则该几何体的体积为(  )
A.2+πB.$3+\frac{π}{2}$C.3+πD.$4+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的两条渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,a1=a,当n≥2时,${S}_{n}^{2}$=3n2an+S${\;}_{n-1}^{2}$,an≠0,n∈N*.
(1)求a的值;
(2)设数列{cn}的前n项和为Tn,且cn=3n-1+a5,求使不等式4Tn>S10成立的最小正整数n的值.

查看答案和解析>>

同步练习册答案