精英家教网 > 高中数学 > 题目详情
19.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示,则y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

分析 由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式;再利用正弦函数的定义域和值域,求得f(x)的范围.

解答 解:根据函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象,
可得A=$\sqrt{2}$,$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{1}{4}•\frac{2π}{ω}$,∴ω=2,再根据五点法作图可得2•$\frac{π}{3}$+φ=π,
∴φ=$\frac{π}{3}$,函数f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$).
∵x∈[-$\frac{π}{4}$,$\frac{π}{2}$],∴2x+$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{4π}{3}$],
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],∴f(x)∈[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$],
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
 甲 6 6 9 9
 乙 7 9 x y
(1)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;
(2)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a>b的概率;
(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记an为图中第n行各个数之和,则a5+a11的值为(  )
A.528B.1020C.1038D.1040

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知二项式${(\root{3}{x^2}+\frac{1}{x})^n}$的展开式中含有x2的项是第3项,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$的展开式的各项系数之和等于${({4\root{3}{b}-\frac{1}{{\sqrt{5b}}}})^5}$展开式中的常数项,求${({\frac{3}{{\sqrt{a}}}-\root{3}{a}})^n}$展开式中含$\frac{1}{a}$的项的二项式系数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果满足不等式$|{x-\frac{5}{4}}|<b({b>0})$的一切实数x也满足不等式|x-1|<$\frac{1}{2}$,则b的取值范围是(  )
A.$({0,\frac{3}{4}})$B.$({0,\frac{1}{4}}]$C.$[{\frac{1}{4},\frac{3}{4}}]$D.$[{\frac{3}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为0.388(结果用小数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)离心率为$\frac{1}{2}$,过点$E(-\sqrt{7},0)$的椭圆的两条切线相互垂直.
(1)求此椭圆的方程;
(2)若存在过点(t,0)的直线l交椭圆于A,B两点,使得FA⊥FB(F为右焦点),求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程sin2πx-$\frac{2}{2x-1}$=0(x∈[-2,3])所有根之和为(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

同步练习册答案