精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的前n项和为Sn , a1=a.当n≥2时,Sn2=3n2an+Sn12 , an≠0,n∈N*
(1)求a的值;
(2)设数列{cn}的前n项和为Tn , 且cn=3n1+a5 , 求使不等式4Tn>Sn成立的最小正整数n的值.

【答案】
(1)解:∵a1=a,当n≥2时Sn2=3n2an+Sn12

∴(a+a22=12a2+a2 =27a3﹣(a+a22

∵an≠0,

∴a2=12﹣2a,a3=3+2a,

∵a1+a3=2a2

∴2(12﹣2a)=a+3+2a,解得a=3,

经检验,当a=3时an=3n,Sn= 、Sn1= 满足Sn2=3n2an+Sn12


(2)解:由(1)可知cn=3n1+15,

∴Tn= +15n,

∵4Tn>Sn

∴4( +15n)>

整理得:23n+60n﹣2>165,即23n+60n>167,

∵f(n)=23n+60n为增函数,且f(2)<167、f(3)>167,

∴满足条件的n的最小值为3.


【解析】(1)通过在Sn2=3n2an+Sn12中令n=2、3,结合a1=a计算可知a2=12﹣2a、a3=3+2a,利用a1+a3=2a2计算可知a=3,验证其是否成立即可;(2)通过(1)可知cn=3n1+15,进而利用分组求和法计算可知Tn= +15n,问题转化为解不等式4( +15n)> ,计算即得结论.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(lnx﹣2k)(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与y轴垂直.
(1)求f(x)的单调区间;
(2)设 ,对任意x>0,证明:(x+1)g(x)<ex+ex2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

2014年 2015年 2016年

根据该折线图,下列结论错误的是( )

A. 年接待游客量逐年增加

B. 月接待游客量逐月增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个程序框图,则输出的S的值是(

A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数与常数,若恒成立,则称为函数的一个“P数对”,设函数的定义域为,且

(1)若的一个“P数对”,且,求常数的值;

(2)若(1,1)是的一个“P数对”,且上单调递增,求函数上的最大值与最小值;

(3)若(-2,0)是的一个“P数对”,且当时,,求k的值及在区间上的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,如果存在实数m,n(m<n),使得f(x)的定义域和值域分别是[m,n]和[3m,3n],则m+n=_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时,

1求证: ,且当 时,有

2判断 R上的单调性;

3设集合AB,若A∩B,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:

(1)平面MENF平面BDD′B′;

(2)当且仅当x=时,四边形MENF的面积最小;

(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;

(4)四棱锥C′﹣MENF的体积V=h(x)为常函数,以上说法中正确的为( )

A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若 =﹣9,则λ的值为(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案