| A. | [3,6] | B. | [3,7] | C. | [4,6] | D. | [0,7] |
分析 根据题意,得出圆C的圆心C与半径r,设P(m,n)在圆C上,表示出$\overrightarrow{AP}$=(a+m,n),$\overrightarrow{BP}$=(m-a,n),利用∠APB=90°,求出a2,根据|OP|表示的几何意义,得出a的取值范围.
解答 解:∵圆C:(x-3)2+(y-4)2=4,
∴圆心C(3,4),半径r=2;
设点P(m,n)在圆C上,则$\overrightarrow{AP}$=(a+m,n),$\overrightarrow{BP}$=(m-a,n);
∵∠APB=90°,
∴$\overrightarrow{AP}$⊥$\overrightarrow{BP}$,
∴(m+a)(m-a)+n2=0;
即a2=m2+n2;
∴|OP|=$\sqrt{{m}^{2}+{n}^{2}}$,
∴|OP|的最大值是|OC|+r=5+2=7,最小值是|OC|-r=5-2=3;
∴a的取值范围是[3,7].
故选:B.
点评 本题考查了平面向量的应用问题,也考查了直线与圆的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com