精英家教网 > 高中数学 > 题目详情
9.设f(x)=ln x,g(x)=f(x)+f′(x),求g(x)的单调区间和最小值.

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可.

解答 解:由题意知f′(x)=$\frac{1}{x}$,g(x)=ln x+$\frac{1}{x}$,
∴g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)=0,得x=1.
当x∈(0,1)时,g′(x)<0,
故(0,1)是g(x)的单调减区间.
当x∈(1,+∞)时,g′(x)>0,
故(1,+∞)是g(x)的单调增区间.
因此,x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点.
所以g(x)的最小值为g(1)=1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且$PA=AD=DC=\frac{1}{2}$,AB=1,M是PB的中点  
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求面AMC与面BMC所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知三棱锥S-ABC的体积为$\frac{\sqrt{2}}{6}$,底面△ABC是边长为1的正三角形,三棱锥S-ABC的所有顶点都在球O的球面上,棱SC是球O的直径,则球O的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线x-ay+a=0与直线2x+y+2=0平行,则实数a的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用一个平面去截一个四棱锥,截面形状不可能的是(  )
A.四边形B.三角形C.五边形D.六边形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和B1C1的中点,那么直线AM与CN所成角的余弦值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正三棱柱ABC-A1B1C1中,每条棱长均相等,D为棱AB的中点,E为侧棱CC1的中点.
(1)求证:OD∥平面A1BE
(2)求证:AB1⊥平面A1BE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$f(x)=\frac{x}{{{2^x}-1}},g(x)=\frac{x}{2}$,则下列结论正确的是(  )
A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)+g(x)是奇函数
C.h(x)=f(x)g(x)是奇函数D.h(x)=f(x)g(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0\;,\;b>0)$的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中C1、C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为$\frac{{\sqrt{5}\;+1}}{2}$.

查看答案和解析>>

同步练习册答案