【题目】已知
、
、
、
与
、
、
、
是8个不同的实数,若方程![]()
有有限多个解,则此方程的解最多有________个.
【答案】4
【解析】
设a1<a2<a3<a4与b1<b2<b3<b4,设函数y=|x﹣a1|+|x﹣a2|+|x﹣a3|+x﹣a4|,y=|x﹣b1|+|x﹣b2|+|x﹣b3|+x﹣b4|,去绝对值,讨论平行和交点的情况,即可得到所求个数.
解:a1,a2,a3,a4与b1,b2,b3,b4是8个不同的实数,
且a1<a2<a3<a4与b1<b2<b3<b4,
设函数y=|x﹣a1|+|x﹣a2|+|x﹣a3|+x﹣a4|,
可得x≤a1,y=a1+a2+a3+a4﹣4x;
a1<x≤a2,y=﹣a1+a2+a3+a4﹣2x;
a2<x≤a3,y=﹣a1﹣a2+a3+a4;
a3<x≤a4,y=﹣a1﹣a2﹣a3+a4+2x;
x>a4,y=﹣a1﹣a2﹣a3﹣a4+4x;
同理可得,设函数y=|x﹣b1|+|x﹣b2|+|x﹣b3|+x﹣b4|,
可得x≤b1,y=b1+b2+b3+b4﹣4x;
b1<x≤b2,y=﹣b1+b2+b3+b4﹣2x;
b2<x≤b3,y=﹣b1﹣b2+b3+b4;
b3<x≤b4,y=﹣b1﹣b2﹣b3+b4+2x;
x>b4,y=﹣b1﹣b2﹣b3﹣b4+4x;
作出二者的图象,
![]()
由图象可知二者最多有4个交点,
故答案为:4.
科目:高中数学 来源: 题型:
【题目】已知抛物线C; y2 =2x的焦点为F,准线为l, P为抛物线C上异于顶点的动点.
(1)过点P作准线1的垂线,垂足为H,若△PHF与△POF的面积之比为2:1,求点P的坐标;
(2)过点M(
,0)任作一条直线 m与抛物线C交于不同的两点A, B.若两直线PA, PB 斜率之和为2,求点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国足球超级联赛某一季的收官阶段中,广州恒大淘宝、北京中赫国安、上海上港、山东鲁能泰山分别积分59分、58分、56分、50分,四家俱乐部都有机会夺冠.A,B,C三个球迷依据四支球队之前比赛中的表现,结合自已的判断,对本次联赛的冠军进行如下猜测:
猜测冠军是北京中赫国安或山东鲁能泰山;
猜测冠军一定不是上海上港和山东鲁能泰山;
猜测冠军是广州恒大淘宝或北京中赫国安.联赛结束后,发现A,B,C三人中只有一人的猜测是正确的,则冠军是( )
A.广州恒大淘宝B.北京中赫国安C.上海上港D.山东鲁能泰山
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,圆
,定点
,点
是圆
上一动点,线段
的垂直平分线交圆
的半径
于点
,点
的轨迹为
.
(1)求曲线
的方程;
(2)已知点
是曲线
上但不在坐标轴上的任意一点,曲线
与
轴的焦点分别为
,直线
和
分别与
轴相交于
两点,请问线段长之积
是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点
坐标为(-1,0),设过点
的直线
与
相交于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲盒内有大小相同的2个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各取2个球.
(1)求取出的4个球中恰有1个红球的概率;
(2)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左右焦点分别为的
、
,离心率为
;过抛物线
焦点
的直线交抛物线于
、
两点,当
时,
点在
轴上的射影为
。连结
并延长分别交
于
、
两点,连接
;
与
的面积分别记为
,
,设
.
(Ⅰ)求椭圆
和抛物线
的方程;
(Ⅱ)求
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
是它的上顶点,点
各不相同且均在椭圆上.
(1)若
恰为椭圆长轴的两个端点,求
的面积;
(2)若
,求证:直线
过一定点;
(3)若
,
的外接圆半径为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com