【题目】已知抛物线C; y2 =2x的焦点为F,准线为l, P为抛物线C上异于顶点的动点.
(1)过点P作准线1的垂线,垂足为H,若△PHF与△POF的面积之比为2:1,求点P的坐标;
(2)过点M(
,0)任作一条直线 m与抛物线C交于不同的两点A, B.若两直线PA, PB 斜率之和为2,求点P的坐标.
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
,如果存在函数
(
,
为常数),使得
对一切实数
都成立则称
为函数
的一个承托函数.现有如下函数:①
;②
;③
;④
.则存在承托函数的
的序号为______.(填入满足题意的所有序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔
(单位:分钟)满足
,经测算,高铁的载客量与发车时间间隔
相关:当
时高铁为满载状态,载客量为
人;当
时,载客量会在满载基础上减少,减少的人数与
成正比,且发车时间间隔为
分钟时的载客量为
人.记发车间隔为
分钟时,高铁载客量为
.
求
的表达式;
若该线路发车时间间隔为
分钟时的净收益
(元),当发车时间间隔为多少时,单位时间的净收益
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是
,甲、丙二人都没有击中目标的概率是
,乙、丙二人都击中目标的概率是
.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E∶y2=2px(p>0)的焦点为F,过F且斜率为1的直线交E于A,B两点,线段AB的中点为M,其垂直平分线交x轴于点C,MN⊥y轴于点N.若四边形CMNF的面积等于7,则E的方程为( )
A.y2=xB.y2=2x
C.y2=4xD.y2=8x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com