精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
sinxcosx+2cos2x-1
(x∈R).若f(x0)=
6
5
x0∈[
π
4
π
2
]
.求cos2x0的值.
函数f(x)=2
3
sinxcosx+2cos2x-1
=
3
(2sinxcosx)+(2cos2x-1)=
3
sin2x+cos2x=2sin(2x+
π
6

因为f(x0)=
6
5
,所以sin(2x0+
π
6
)=
3
5

由x0∈[
π
4
π
2
],得2x0+
π
6
∈[
3
6
]
从而cos(2x0+
π
6
)=-
1-sin2(2x0+
π
6
)
=-
4
5

所以cos2x0=cos[(2x0+
π
6
)-
π
6
]=cos(2x0+
π
6
)cos
π
6
+sin(2x0+
π
6
)sin
π
6
=
3-4
3
10
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案