【题目】中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数 可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是( )
A.①③
B.①③④
C.②③
D.①④
【答案】A
【解析】解:过圆心的直线都可以将圆的周长和面积同时平分,
故对于任意一个圆O,其“优美函数”有无数个,故①正确;
函数 的大致图象如图1,故其不可能为圆的“优美函数”;∴②不正确;
将圆的圆心放在正弦函数y=sinx的对称中心上,
则正弦函数y=sinx是该圆的“优美函数”;
故有无数个圆成立,故③正确;
函数y=f(x)的图象是中心对称图形,则y=f(x)是“优美函数”,
但函数y=f(x)是“优美函数”时,图象不一定是中心对称图形,如图2,
故选:A.
过圆心的直线都可以将圆的周长和面积同时平分,故①正确;
作函数 的大致图象,从而判断②的正误;
将圆的圆心放在正弦函数y=sinx的对称中心上,则正弦函数y=sinx是该圆的“优美函数”;即可判断③的正误;
函数y=f(x)的图象是中心对称图形,则y=f(x)是“优美函数”,但函数y=f(x)是“优美函数”时,图象不一定是中心对称图形,作图举反例即可.
科目:高中数学 来源: 题型:
【题目】已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的最小值是1,且.
(1)求函数的解析式;
(2)若,试求的最小值;
(3)若在区间上,的图像恒在的图像上方,试确定实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在R上的奇函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(-1)=2.
(1)求证:f(x)为奇函数;
(2)求证:f(x)是R上的减函数;
(3)求f(x)在[-2,4]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95. 参考公式:相关系数 ,
回归直线方程是: ,其中 ,
参考数据: , , , .
(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(2)若这8位同学的数学、物理、化学分数事实上对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化学分数z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;
②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(a﹣bx3)ex﹣ ,且函数f(x)的图象在点(1,e)处的切线与直线x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1)求课外兴趣小组中男、女同学的人数;
(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74 ,请问哪位同学的实验更稳定?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com