ΪÁ˽âij°àѧÉúϲ°®´òÀºÇòÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ô±¾°à50È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄÁÐÁª±í£º
ϲ°®´òÀºÇò ²»Ï²°®´òÀºÇò ºÏ¼Æ
ÄÐÉú 5
Å®Éú 10
ºÏ¼Æ 50
ÒÑÖªÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽ϲ°®´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ
3
5
£®
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£»
£¨3£©ÒÑ֪ϲ°®´òÀºÇòµÄ10λŮÉúÖУ¬A1£¬A2£¬A3»¹Ï²»¶´òÓðëÇò£¬B1£¬B2»¹Ï²»¶´òƹÅÒÇò£¬C1£¬C2»¹Ï²»¶Ìß×ãÇò£¬ÏÖÔÙ´Óϲ»¶´òÓðëÇò¡¢Ï²»¶´òƹÅÒÇò¡¢Ï²»¶Ìß×ãÇòµÄÅ®ÉúÖи÷Ñ¡³ö1Ãû½øÐÐÆäËû·½ÃæµÄµ÷²é£¬ÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
p£¨K2¡Ýk£© 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
£¨²Î¿¼¹«Ê½£ºK2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
£¬ÆäÖÐn=a+b+c+d£©
¿¼µã£º¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃ
רÌ⣺×ÛºÏÌâ,¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©¸ù¾ÝÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽ϲ°®´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ
3
5
£¬¿ÉµÃϲ°®´òÀºÇòµÄѧÉú£¬¼´¿ÉµÃµ½ÁÐÁª±í£»
£¨2£©ÀûÓù«Ê½ÇóµÃK2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÀûÓÃÁоٷ¨È·¶¨»ù±¾Ê¼þµÄ¸öÊý£¬½áºÏ¶ÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½£¬¼´¿ÉÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®
½â´ð£º ½â£º£¨1£©¸ù¾ÝÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽ϲ°®´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ
3
5
£¬¿ÉµÃϲ°®´òÀºÇòµÄѧÉúΪ30ÈË£¬¹Ê¿ÉµÃÁÐÁª±í²¹³äÈçÏ£º-----------------------------------------------------£¨4·Ö£©
ϲ°®´òÀºÇò ²»Ï²°®´òÀºÇò ºÏ¼Æ
ÄÐÉú 20 5 25
Å®Éú 10 15 25
ºÏ¼Æ 30 20 50
£¨2£©¡ßK2=
50¡Á(20¡Á15-10¡Á5)2
30¡Á20¡Á25¡Á25
=
25
3
¡Ö8.333£¾7.879
--------------------£¨8·Ö£©
¡àÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ®------------------------------------------£¨9·Ö£©
£¨3£©´Ó10λŮÉúÖÐÑ¡³öϲ»¶´òÓðëÇò¡¢Ï²»¶´òƹÅÒÇò¡¢Ï²»¶Ìß×ãÇòµÄ¸÷1Ãû£¬ÆäÒ»ÇпÉÄܵĽá¹û×é³ÉµÄ»ù±¾Ê¼þÈçÏ£º£¨A1£¬B1£¬C1£©£¬£¨A1£¬B1£¬C2£©£¬£¨A1£¬B2£¬C1£©£¬£¨A1£¬B2£¬C2£©£¬£¨A2£¬B1£¬C1£©£¬£¨A2£¬B1£¬C2£©£¬£¨A2£¬B2£¬C1£©£¬£¨A2£¬B2£¬C2£©£¬£¨A3£¬B1£¬C1£©£¬£¨A3£¬B1£¬C2£©£¬£¨A3£¬B2£¬C1£©£¬£¨A3£¬B2£¬C2£©»ù±¾Ê¼þµÄ×ÜÊýΪ12£¬---------------------------£¨11·Ö£©
ÓÃM±íʾ¡°B1£¬C1²»È«±»Ñ¡ÖС±Õâһʼþ£¬ÔòÆä¶ÔÁ¢Ê¼þ
.
M
±íʾ¡°B1£¬C1È«±»Ñ¡ÖС±Õâһʼþ£¬ÓÉÓÚ
.
M
ÓÉ£¨A1£¬B1£¬C1£©£¬£¨A2£¬B1£¬C1£©£¬£¨A3£¬B1£¬C1£©¹²3¸ö»ù±¾Ê¼þ×é³É£¬
ËùÒÔP(
.
M
)=
3
12
=
1
4
£¬---------------------------------------------------£¨13·Ö£©
ÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½µÃP(M)=1-P(
.
M
)=1-
1
4
=
3
4
£®------------------£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑé֪ʶÓë¸ÅÂʵļÆË㣬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôµãA£¨a£¬b£©£¨ÆäÖÐa¡Ùb£©ÔÚ¾ØÕóM=
cos ¦Á-sin ¦Á
sin ¦Ácos ¦Á
 ¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄµãΪB£¨-b£¬a£©£¬
£¨¢ñ£©Çó¾ØÕóMµÄÄæ¾ØÕó£»
£¨¢ò£©ÇóÇúÏßC£ºx2+y2=1ÔÚ¾ØÕóN=
0
1
2
10
Ëù¶ÔÓ¦±ä»»µÄ×÷ÓÃϵõ½µÄеÄÇúÏßC¡äµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º
1
n+1
+
1
n+2
+¡­+
1
3n+1
£¾
25
24
£®£¨n=1£¬2£¬3¡­£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA={x|log2£¨4x£©•log4
4
x2
¡Ý2}£¬g£¨x£©=
4x
4x+1

£¨¢ñ£©Çó³ö¼¯ºÏA£»
£¨¢ò£©ÅжÏg£¨x£©µÄµ¥µ÷ÐÔ£¬²¢Óõ¥µ÷ÐԵ͍ÒåÖ¤Ã÷£»
£¨¢ó£©µ±¦ËΪºÎֵʱ£¬·½³Ìg£¨x£©=¦ËÔÚx¡ÊAÉÏÓÐʵÊý½â£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¸´Êýz=£¨a2-4£©+£¨a+2£©i£¨a¡ÊR£©
£¨¢ñ£©ÈôzΪ´¿ÐéÊý£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©ÈôzÔÚ¸´Æ½ÃæÉ϶ÔÓ¦µÄµãÔÚÖ±Ïßx+2y+1=0ÉÏ£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃüÌâp£º¡°¸´Êýz=£¨¦Ë2-1£©+£¨¦Ë2-2¦Ë-3£©i£¬£¨¦Ë¡ÊR£©ÊÇʵÊý¡±£¬ÃüÌâq£º¡°ÔÚ¸´Æ½ÃæCÄÚ£¬¸´Êýz=¦Ë+£¨¦Ë2+¦Ë-6£©i£¬£¨¦Ë¡ÊR£©Ëù¶ÔÓ¦µÄµãÔÚµÚÈýÏóÏÞ¡±£®
£¨1£©ÈôÃüÌâpÊÇÕæÃüÌ⣬Çó¦ËµÄÖµ£»
£¨2£©Èô¡°©Vp¡Äq¡±ÊÇÕæÃüÌ⣬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïßy=kx+bÓëÇúÏßx2+4y2-4=0½»ÓÚA¡¢BÁ½µã£¬¼Ç¡÷AOBµÄÃæ»ýΪS£¨OÊÇ×ø±êÔ­µã£©£®
£¨1£©ÇóÇúÏßµÄÀëÐÄÂÊ£»
£¨2£©ÇóÔÚk=0£¬0£¼b£¼1µÄÌõ¼þÏ£¬SµÄ×î´óÖµ£»
£¨3£©µ±|AB|=2£¬S=1ʱ£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè
a
=£¨x£¬1£©£¬
b
=£¨2£¬-1£©£®
£¨1£©Èô
a
¡Í
b
£¬ÇóxµÄÖµ£»
£¨2£©Èô
a
Óë
b
µÄ¼Ð½ÇΪ¶Û½Ç£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèA=
21
53
£¬x=
x
y
£¬B=
4
11
£¬ÇÒAX=B£®
£¨1£©ÇóA-1£»
£¨2£©ÇóX£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸