精英家教网 > 高中数学 > 题目详情
18、如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.
分析:(1)由平面ABCD⊥平面ABE,AD⊥AB,得到AD⊥平面ABE,从而得出AD⊥AE,由线面垂直的判定得AE⊥平面BCE,从而证得AE⊥BE,(2)设AC∩BD=G,连接FG,易知G是AC的中点,由中位线定理得FG∥AE,由线面平行的判定证得AE∥平面BFD.
解答:解:(1)证明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,AD⊥AB,
∴AD⊥平面ABE,AD⊥AE.
∵AD∥BC,则BC⊥AE.(3分)
又BF⊥平面ACE,则BF⊥AE.
∵BC∩BF=B,∴AE⊥平面BCE,∴AE⊥BE.(7分)

(2)设AC∩BD=G,连接FG,易知G是AC的中点,
∵BF⊥平面ACE,则BF⊥CE.
而BC=BE,∴F是EC中点.(10分)
在△ACE中,FG∥AE,
∵AE?平面BFD,FG?平面BFD,
∴AE∥平面BFD.(14分)
点评:本题通过线线平行和线面平行,线线垂直和线面垂直及面面垂直的转化,来考查线面、面面平行和垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案