精英家教网 > 高中数学 > 题目详情
某海域有两个岛屿,岛在岛正东4海里处。经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发现过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系。

(1)求曲线的标准方程;(6分)
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?(8分)
(1) ;(2)点的坐标为

试题分析:(1)由题意知曲线是以为焦点且长轴长为8的椭圆         3分
,则,故                     5分
所以曲线的方程是                           6分
(2)由于两岛收到鱼群发射信号的时间比为
因此设此时距两岛的距离分别比为             7分
即鱼群分别距两岛的距离为5海里和3海里。       8分
,由 ,    10分
,                                     12分 
                                     13分
的坐标为                 14分
点评:中档题,利用椭圆的定义,明确曲线是椭圆并求得其标准方程为,作为实际问题解决,很好的体现了数学的妙用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题16分)设双曲线:的焦点为F1,F2.离心率为2。
(1)求此双曲线渐近线L1,L2的方程;
(2)若A,B分别为L1,L2上的动点,且2,求线段AB中点M的轨迹方程,并说明轨迹是什么曲线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2为椭圆的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q 两点,当四边形PF1QF2面积最大时,的值等于(    )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

过抛物线焦点垂直于对称轴的弦叫做抛物线的通径。如图,已知抛物线,过其焦点F的直线交抛物线于 两点。过作准线的垂线,垂足分别为.

(1)求出抛物线的通径,证明都是定值,并求出这个定值;
(2)证明: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设AB是平面的斜线段,A为斜足,若点P在平面内运动,使得△ABP的面积为定值,则动点P的轨迹是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若实数a、b、c成等差数列,点P(–1, 0)在动直线l:ax+by+c=0上的射影为M,点N(0, 3),则线段MN长度的最小值是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的两条渐近线的夹角大小等于        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

要使直线与焦点在轴上的椭圆总有公共点,实数的取值范围是(   )
A.  B.  C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的离心率,过的直线到原点的距离是 
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.

查看答案和解析>>

同步练习册答案