精英家教网 > 高中数学 > 题目详情
3.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),
即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为(-3,-1)∪(1,2).

分析 关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0可看成前者不等式中的x用$\frac{1}{x}$代入可得不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集.

解答 解:若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),
则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0可看成前者不等式中的x用$\frac{1}{x}$代入可得,
则$\frac{1}{x}$∈(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),则x∈(-3,-1)∪(1,2),
故答案为:(-3,-1)∪(1,2).

点评 本题考查不等式的解法,考查方法的类比,正确理解题意是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设M是49个不同的自然数构成的集合,M中每一个数的素因子均小于10,求证:从M中一定可选出四个不同的数,使它们之积等于一个自然数的四次方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$=(1,cosθ))与$\overrightarrow{b}$=(-1,2cosθ)垂直,则cos2θ等于(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f'(x)是函数f(x)的导函数,f''(x)是函数f'(x)的导函数.对于三次函数y=f(x),若方程f''(x0)=0,则点($\begin{array}{l}{{x_0},f({x_0})}\end{array}$)即为函数y=f(x)图象的对称中心.设函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=(  )
A.1008B.2014C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校开设8门选修课程供学生选修,其中A,B,C三门选修课由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是(  )
A.30B.40C.90D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若sin(π-α)-cos(π+α)=$\frac{1}{5}$,则sin($\frac{3π}{2}$-α)cos($\frac{π}{2}$+α)等于(  )
A.$\frac{12}{25}$B.-$\frac{12}{25}$C.$\frac{24}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知sin(π-α)=$\frac{4}{5}$,且α是第一象限的角,则cos(α+$\frac{π}{4}$)的值为-$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p=2520.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将6名志愿者分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组都由3名志愿者组成,不同的安排方案有(  )
A.20种B.12种C.120种D.40种

查看答案和解析>>

同步练习册答案