精英家教网 > 高中数学 > 题目详情
15.已知sin(π-α)=$\frac{4}{5}$,且α是第一象限的角,则cos(α+$\frac{π}{4}$)的值为-$\frac{\sqrt{2}}{10}$.

分析 利用诱导公式求得sinα的值、可得cosα的值,再利用两角和差的余弦公式求得cos(α+$\frac{π}{4}$)的值.

解答 解:∵sin(π-α)=sinα=$\frac{4}{5}$,且α是第一象限的角,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{3}{5}$,
则cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$\frac{3}{5}•\frac{\sqrt{2}}{2}$-$\frac{4}{5}•\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
故答案为:$-\frac{{\sqrt{2}}}{10}$.

点评 本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,若直线l:x-2y+m-1=0在y轴上的截距为$\frac{1}{2}$,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在R上的函数f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判断函数f(x)的奇偶性;
(2)判断并证明f(x)的单调性;
(3)若f(2-t2)+f(t)<0,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:
解:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),
即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为(-3,-1)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若某公司从5位大学毕业生甲、乙、丙、丁、戊中录用3人,这5人被录用的机会均等,则甲、乙同时被录用的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆C1:(x+2)2+(y+3)2=25与C2:(x-2)2+(y-3)2=4的位置关系是(  )
A.内切B.相交C.相离D.外切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某程序框图如图所示,则该程序运行后输出的值是(  )
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l,m是两条不同的直线,α,β是两个不重合的平面,给出下列四个命题:
①若α∥β,l⊥α,则l⊥β;  ②若l∥m,l?α,m?β,则α∥β;
③若m⊥α,l⊥m,则l∥α;  ④若α⊥β,l?α,m?β,则l⊥m.
其中真命题的序号为(  )
A.②③B.C.③④D.①④③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某工作小组男女生共8人,现从男生中选2人,女生中选1人,去做3项不同的工作,每人一项,共有36种不同的选法,则男女生人数各为(  )
A.2,6B.5,3C.3,5D.6,2

查看答案和解析>>

同步练习册答案