分析 利用诱导公式求得sinα的值、可得cosα的值,再利用两角和差的余弦公式求得cos(α+$\frac{π}{4}$)的值.
解答 解:∵sin(π-α)=sinα=$\frac{4}{5}$,且α是第一象限的角,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{3}{5}$,
则cos(α+$\frac{π}{4}$)=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$\frac{3}{5}•\frac{\sqrt{2}}{2}$-$\frac{4}{5}•\frac{\sqrt{2}}{2}$=-$\frac{\sqrt{2}}{10}$,
故答案为:$-\frac{{\sqrt{2}}}{10}$.
点评 本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③ | B. | ① | C. | ③④ | D. | ①④③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2,6 | B. | 5,3 | C. | 3,5 | D. | 6,2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com