【题目】设集合
由满足下列两个条件的数列
构成:①
②存在实数
使得
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
试判断数列
是否为集合
的元素;
(2)设数列
的前项和为
且
若对任意正整数
点
均在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
若数列
没有最大值,求证:数列
一定是单调递增数列。
【答案】(1)不是;(2)
,
;(3)证明略
【解析】
(1)由于
,可知数列
不满足条件①.(2)由于点
,
在直线
上,可得
,利用递推关系可得:
,利用等比数列的前
项和公式可得:
,验证
,可知:条件①成立.由于
,即可得出条件②及其
,
的范围.(3)利用反证法证明.
(1)解:![]()
,因此数列
不满足条件①,
数列
.
(2)证明:
点
,
在直线
上,
,
当
时,
,可得:
,化为
,
n=1时,易知
,显然![]()
数列
是等比数列,首项为1,公比为
.
,
则
,
![]()
.
条件①成立.
由于
,
,
.
(3)证明:(反证法)若数列
非单调递增,则一定存在正整数
,使
成立,
当
时,由
,得
,
而
,所以
.
显然在
,
,
,
这
项中一定存在一个最大值,不妨记为
,
所以为
,这与数列
没有最大值相矛盾.
所以假设不成立,故命题得证.
科目:高中数学 来源: 题型:
【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2当且仅当ad=bc(即
)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数
的最大值及取得最大值时x的值分别为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂因排污比较严重,决定着手整治,一个月时污染度为
,整治后前四个月的污染度如下表:
月数 |
|
|
|
| … |
污染度 |
|
|
|
| … |
污染度为
后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:
,
,
,其中
表示月数,
、
、
分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,
ADC=
PAB=90°,BC=CD=
AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
![]()
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工
人(
,且
为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员
人,留岗员工可多创利润
千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员
人,留岗员工可多创利润
千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为
,写出公司获得的经济效益
(千元)关于
的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为
,中心角为
,甲由扇形中心
出发沿
以每秒2米的速度向
快走,同时乙从
出发,沿扇形弧以每秒
米的速度向
慢跑,记
秒时甲、乙两人所在位置分别为
,
,通过计算
,判断下列说法是否正确:
![]()
(1)当
时,函数
取最小值;
(2)函数
在区间
上是增函数;
(3)若
最小,则
;
(4)
在
上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com