【题目】某公司为了应对金融危机,决定适当进行裁员,已知这家公司现有职工
人(
,且
为10的整数倍),每人每年可创利100千元,据测算,在经营条件不变的前的提下,若裁员人数不超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利1千元(即若裁员
人,留岗员工可多创利润
千元);若裁员人数超过现有人数的30%,则每裁员1人,留岗员工每人每年就能多创利2千元(即若裁员
人,留岗员工可多创利润
千元),为保证公司的正常运转,留岗的员工数不得少于现有员工人数的50%,为了保障被裁员工的生活,公司要付给被裁员工每人每年20千元的生活费.
(1)设公司裁员人数为
,写出公司获得的经济效益
(千元)关于
的函数(经济效益=在职人员创利总额—被裁员工生活费);
(2)为了获得最大的经济效益,该公司应裁员多少人?
科目:高中数学 来源: 题型:
【题目】数列
的前
项1,3,7,
,
(
)组成集合
,从集合
中任取
(
)个数,其所有可能的
个数的乘积的和为
(若只取一个数,规定乘积为此数本身),记
.例如:当
时,
,
,
;
时,
,
,
,
.
(1)当
时,求
,
,
,
的值;
(2)证明:
时集合
的
与
时集合
的
(为以示区别,用
表示)有关系式
(
,
);
(3)试求
(用
表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产
千件,需另投入成本
,当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合
由满足下列两个条件的数列
构成:①
②存在实数
使得
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
试判断数列
是否为集合
的元素;
(2)设数列
的前项和为
且
若对任意正整数
点
均在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
若数列
没有最大值,求证:数列
一定是单调递增数列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1、F2为双曲线
(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求
的值;
(3)过圆O上任意一点Q作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|AB|=2|OM|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线
的右焦点分别为
,短袖长为
,点
在曲线
上,
直线
上,且
.
![]()
(1)求曲线的标准方程;
(2)试通过计算判断直线
与曲线
公共点的个数.
(3)若点
在都在以线段
为直径的圆上,且
,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列
满足:
,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前
项;
(2)设数列
是一个“比差等数列”,问
是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列
是一个“比差等数列”,
为其前
项的和,试证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
、
、
,如果存在实数
、
使得
,那么称
为
、
的生成函数.
(1)若
,
,
,则
是否分别为
、
的生成函数?并说明理由;
(2)设
,
,
,
,生成函数
,若不等式
在
上有解,求实数
的取值范围;
(3)设
,
取
,
,生成函数
图象的最低点坐标为
,若对于任意正实数
、
且
,试问是否存在最大的常数
,使
恒成立?如果存在,求出这个
的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com