精英家教网 > 高中数学 > 题目详情
4.若loga2=m,loga3=n,(a>0且a≠1)则a2m+n=12.

分析 把对数式化为指数式,再利用指数幂的运算性质即可得出.

解答 解:∵loga2=m,loga3=n,(a>0且a≠1),
∴am=2,an=3.
则a2m+n=(am2•an=22×3=12.
故答案为:12.

点评 本题考查了指数幂与对数的运算法则、对数式与指数式的互化,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:A1C1=AB1
(Ⅱ)若AC⊥AB1,∠BCC1=120°,AB=BC,求二面角A-A1B1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求符合下列条件的双曲线的标准方程
(1)焦点在x轴上,顶点间的距离为6,渐近线方程为y=±$\frac{1}{3}x$
(2)与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦点,它们的离心率之和为$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}和{bn}的前n项和分别为Sn和Tn,已知an>0,(an+1)2=4(Sn+1),bnSn-1=(n+1)2,其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若α,β为锐角,且满足cosα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,则sinβ的值为(  )
A.-$\frac{16}{65}$B.$\frac{33}{65}$C.$\frac{56}{65}$D.$\frac{63}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为$\frac{π}{2}$,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b=$\sqrt{3}$,若l的斜率存在,M为AB的中点,且$\overrightarrow{FM}$•$\overrightarrow{AB}$=0,求l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“如果a=4,那么方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1表示焦点在x轴上的椭圆”的逆命题(  )
A.是真命题B.是假命题C.没有逆命题D.无法确定真假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合M={x|-1≤x≤2},N={x|x≤a},若M⊆N,则a的取值范围是(  )
A.a≤2B.a≥2C.a≤-1D.a≥-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sin(ωx-φ)-1(ω>0,|φ|<π)的一个零点是x=$\frac{π}{3}$,直线x=-$\frac{π}{6}$函数图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(  )
A.[-$\frac{π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈ZB.[-$\frac{5π}{3}$+3kπ,-$\frac{π}{6}$+3kπ],k∈Z
C.[-$\frac{2π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈ZD.[-$\frac{π}{3}$+2kπ,-$\frac{π}{6}$+2kπ],k∈Z

查看答案和解析>>

同步练习册答案