分析 把极坐标方程化为直角坐标方程、参数方程化为普通方程,联立解出即可得出.
解答 解:曲线C1的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,展开$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=$\sqrt{2}$,可得直角坐标方程:x+y=2.
曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),化为直角坐标方程:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
联立$\left\{\begin{array}{l}{x+y=2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{2}{7}}\\{y=\frac{12}{7}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$.
∴曲线C1,C2的交点的直角坐标为$(\frac{2}{7},\frac{12}{7})$,(2,0).
点评 考查了曲线的交点、极坐标化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3+2$\sqrt{5}$ | B. | 3-$\frac{\sqrt{5}}{2}$ | C. | 3-$\sqrt{5}$ | D. | 3+$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{41}$ | B. | $\sqrt{39}$ | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com