精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,两点A(-5,$\frac{5π}{4}$),B(7,$\frac{7π}{12}$)间的距离是(  )
A.$\sqrt{41}$B.$\sqrt{39}$C.6D.4

分析 点A(-5,$\frac{5π}{4}$),即点A(5,$\frac{π}{4}$),可得AOB=$\frac{π}{3}$,利用余弦定理即可得出.

解答 解:点A(-5,$\frac{5π}{4}$),即点A(5,$\frac{π}{4}$),
∠AOB=$\frac{7π}{12}$-$\frac{π}{4}$=$\frac{π}{3}$,
∴|AB|=$\sqrt{{5}^{2}+{7}^{2}-2×5×7×cos\frac{π}{3}}$=$\sqrt{39}$.
故选:B.

点评 本题考查了极坐标的意义、余弦定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某单位的春节联欢活动,组织了一次幸运抽奖活动,袋中装有5个除颜色外,大小、质地均相同的小球,其中2个红球,3个白球,抽奖者从中一次摸出2个小球,摸取后放回,摸到2个红球得一等奖,1个红球得二等奖,甲、乙两人各抽奖一次,则甲得一等奖且乙得二等奖的概率为$\frac{3}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若线性方程组的增广矩阵为$(\begin{array}{l}{a}&{0}&{2}\\{0}&{1}&{b}\end{array})$,解为$\left\{{\begin{array}{l}{x=2}\\{y=1}\end{array}}\right.$,则a+b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知极点与原点重合,极轴与x轴正半轴重合,若曲线C1的极坐标方程为ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),试求曲线C1,C2的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,曲线C的参数方程是$\left\{\begin{array}{l}{x=1+2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$ (α∈R,α为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的普通方程,并把其化为极坐标方程(要求化为ρ=f(θ)的形式);
(2)点A,B在曲线C上,且∠AOB=90°,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=lg(x+k),若其反函数f-1(x)的图象经过点(1,4),则实数k=(  )
A.1B.4C.6D.9999

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a}{x}({a∈R})$.
(1)若f(x)在[1,e]的最小值为$\frac{3}{2}$,求a的值;
(2)若f(x)<x+a在x∈(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直平行六面体各棱的长都等于5,底面两条对角线的平方差为50,求这个平行六面体的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.{an}中,Sn=3n2+6n,{bn}满足bn=($\frac{1}{2}$)n-1,{cn}满足cn=$\frac{1}{6}$anbn
(1)求{an};
(2)求{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案