精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x),若f(x)的定义域中的a、b满足f(-a)+f(-b)-3=f(a)+f(b)+3,则f(a)+f(b)=-3.

分析 由已知得f(x)是奇函数,由此利用奇函数的性质能求出f(a)+f(b).

解答 解:∵f(x)=x3+lg($\sqrt{{x}^{2}+1}$+x),
∴f(-x)=-x3-lg($\sqrt{{x}^{2}+1}$+x)=-f(x),
∵f(x)的定义域中的a、b满足f(-a)+f(-b)-3=f(a)+f(b)+3,
∴2[f(a)+f(b)]=-6,
∴f(a)+f(b)=-3.
故答案为:-3.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.抛掷两颗质地均匀骰子,向上一面的点数之和为X,则X的期望E(X)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=cosx[cosx-cos(x+$\frac{π}{3}$)].求
(1)该函数的周期;
(2)单调递减区间;
(3)最大值和最小值,并写出求得最值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=Asin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象如图所示,若$\overrightarrow{PQ}$•$\overrightarrow{QS}$=$\frac{{π}^{2}}{8}$-8,则函数f(x)的解析式为(  )
A.f(x)=2sin(3x-$\frac{π}{4}$)B.f(x)=2sin(3x+$\frac{π}{4}$)C.f(x)=2sin(2x+$\frac{π}{3}$)D.f(x)=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设lg2=a,则lg50=(  )
A.2-aB.1-aC.1+aD.2+a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足an+1=2an+n,n∈N+,若a3=6,则a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.化简:$\frac{1}{cos2θ}$-tanθtan2θ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的不等式x2-2mx+1>0在[$\frac{1}{2}$,2)内恒成立,则m的取值范围(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.
百分制85以及以上70分到84分60分到69分60分以下
等级ABCD
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案