精英家教网 > 高中数学 > 题目详情
如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)

(I)设几何体(1)、几何体(2)的体积分为是,求的比值
(II)在几何体(2)中,求二面角的正切值
(I)5;(II)

试题分析:(I)先设出边长求长方体的体积,再求几何体(2)的体积,用长方体的体积减去即为几何体(1)的体积分为是。(II) 作于点,连结,可证得,再得,根据二面角平面角的定义可知是二面角的平面角。最后在直角三角形中求的正切值。
试题解析:解(I)设BC=a,则AB=2a,,所以      2分
因为              4分
                     5分
所以        6分
(II)由点C作于点H,连结PH,因为面CQR,面CQR,所以
因为,所以面PCH,又因为面PCH,
所以,所以是二面角的平面角              9分

所以                                 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.

(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,为线段的中点,.

(Ⅰ)证明:⊥平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.

(I)求三棱锥E—PAD的体积;
(II)试问当点E在BC的何处时,有EF//平面PAC;
(1lI)证明:无论点E在边BC的何处,都有PEAF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面是边长为1的正方形,平面的中点,在棱上.

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四面体中,,点分别是的中点.

(1)EF∥平面ACD;
(2)求证:平面⊥平面
(3)若平面⊥平面,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱锥S­ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知三棱锥,侧棱两两互相垂直,且,则以为球心且1为半径的球与三棱锥重叠部分的体积是               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两个球的表面积之比为,则这两个球的体积之比为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案