精英家教网 > 高中数学 > 题目详情
1.若定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有$f(x)+f(y)=f(\frac{x+y}{1+xy})$,则称f(x)为漂亮函数.
(1)已知$g(x)=lg\frac{1-x}{1+x}$,问g(x)是否为漂亮函数,并说明理由;
(2)已知f(x)为漂亮函数,判断f(x)的奇偶性;
(3)若漂亮函数f(x)满足:当x∈(0,1)时,都有f(x)>0,试判断f(x)在(-1,1)上的单调性,并给出证明.

分析 (1)根据平了函数的定义,证明g(x)+g(y)=g($\frac{x+y}{1+xy}$),即可.
(2)利用赋值法,x=y=0求出f(0)的值,结合y=-x,利用已知条件,推出函数是奇函数即可.
(3)先设0<x1<x2<1,然后作差求f(x1)-f(x2),根据题目条件进行化简变形判定其符号,根据函数单调性的定义即可判定.

解答 解:(1)∵g(x)+g(y)=lg$\frac{1-x}{1+x}$+lg$\frac{1-y}{1+y}$=lg($\frac{1-x}{1+x}$•$\frac{1-y}{1+y}$)=lg$\frac{1+xy-(x+y)}{1+xy+x+y}$,
g($\frac{x+y}{1+xy}$)=lg$\frac{1-\frac{x+y}{1+xy}}{1+\frac{x+y}{1+xy}}$=lg$\frac{1+xy-(x+y)}{1+xy+x+y}$,
则g(x)+g(y)=g($\frac{x+y}{1+xy}$),成立,即g(x)是漂亮函数.
证明:由x=y=0得f(0)+f(0)=f($\frac{0+0}{1+0}$)=f(0),∴f(0)=0,
任取x∈(-1,1),则-x∈(-1,1),f(x)+f(-x)=f($\frac{x-x}{1-{x}^{2}}$)=f(0)=0.
∴f(x)+f(-x)=0,
即f(x)=-f(-x).
∴f(x)在(-1,1)上为奇函数.
f(x)在(-1,1)上单调递增,
∵f(x)在(-1,1)上为奇函数,且f(0)=0,
∴只需要证明当x∈(0,1)时,函数的单调性即可,
证明:设0<x1<x2<1,则f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}{-x}_{2}}{1-{x}_{1}{x}_{2}}$).
∵x∈(0,1)时,都有f(x)>0,
∴x∈(-1,0)时,都有f(x)<0
而x1-x2<0,0<x1x2<1所以-1<$\frac{{x}_{1}{-x}_{2}}{1-{x}_{1}{x}_{2}}$<0
∵当x∈(-1,0)时,f(x)<0
∴f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}{-x}_{2}}{1-{x}_{1}{x}_{2}}$)<0
即当x1<x2时,f(x1)<f(x2).
∴f(x)在(0,1)上单调递增.
即f(x)在(-1,1)上单调递增

点评 本题主要考查抽象函数的应用以及,函数的单调性的判定与证明,以及函数奇偶性的判定,函数的奇偶性是函数在定义域上的“整体”性质,单调性是函数的“局部”性质,综合考查函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1和F2,左右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中项,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线$\frac{y^2}{3}-\frac{x^2}{9}=1$的实轴长等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若a=8,b=5,B=30°,则sinA=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从2015名学生中选50人组成参观团,先用简单随机抽样方法剔除15人,再将其余2000人从0到1999编号,按等距系统抽样方法选取,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是(  )
A.1990B.1991C.1989D.1988

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{1-x}$+$\frac{1}{{\sqrt{x}}}$的定义域为(  )
A.{x|0≤x≤1}B.{x|x≥0}C.{x|x≥1,或x<0}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求值
(1)${log}_{3}{3}^{\frac{3}{2}}$+lg25+lg4+${7}^{{log}_{7}2}+{(-9.8)}^{0}$
(2)$\sqrt{\frac{25}{4}}$-${(\frac{27}{8})}^{\frac{1}{3}}$+${(\frac{1}{64})}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若在框图中输入的a,b分别为30、18,则输出的a为(  )
A.0B.2C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x+1|+|2x-3|.
(1)若关于x的不等式f(x)<|1-2a|的解集不是空集,求实数a的取值范围;
(2)若关于t的一元二次方程t2+2$\sqrt{6}$t+f(m)=0有实根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案