精英家教网 > 高中数学 > 题目详情
11.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1和F2,左右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中项,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

分析 由题意可得A1(-a,0),A2(a,0),F1(-c,0),F2(c,0),令x=c,可得P的坐标,再由等比数列的中项的性质,可得(c+a)2+($\frac{{b}^{2}}{a}$)2=2c(c+a),化简整理,由此可求双曲线的离心率.

解答 解:由题意可得A1(-a,0),A2(a,0),F1(-c,0),F2(c,0),
令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
可取P(c,$\frac{{b}^{2}}{a}$),
由|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中项,
可得|$\overrightarrow{P{A}_{1}}$|2=|$\overrightarrow{{F}_{1}{F}_{2}}$|•|$\overrightarrow{{A}_{1}{F}_{2}}$|,
即有(c+a)2+($\frac{{b}^{2}}{a}$)2=2c(c+a),
化为(c+a)(c-a)=c2-a2=b2=$\frac{{b}^{4}}{{a}^{2}}$,
即有a=b,c=$\sqrt{2}$a,
由e=$\frac{c}{a}$可得e=$\sqrt{2}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用等比数列中项的性质,以及离心率公式和a,b,c的关系,考查学生的化简计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C对应的边分别是a,b,c,已知3cosBcosC+2=3sinBsinC+2cos2A
(1)求角A的大小;
(2)已知$\frac{b}{c}$+$\frac{c}{b}$=4,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注入60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为$120\sqrt{6t}$吨(0≤t≤24)
(1)设t小时后蓄水池中的存水量为y吨,写出y关于t的函数表达式;
(2)求从供水开始到第几小时,蓄水池中的存水量最少?最少水量是多少吨?
(3)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在区间[1,e]可被g(x)=$\frac{1}{x}$-b替代,则0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(≠0),使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题的有①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,则该双曲线的离心率e的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1,F2为双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求:
(1)△F1PF2的周长;
(2)△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点F($\sqrt{5}$,0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且点F到双曲线的渐近线的距离等于2,则过点F且与此双曲线只有一个交点的直线方程为y=2x-2$\sqrt{5}$或y=-2x+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.知点A,B分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有$f(x)+f(y)=f(\frac{x+y}{1+xy})$,则称f(x)为漂亮函数.
(1)已知$g(x)=lg\frac{1-x}{1+x}$,问g(x)是否为漂亮函数,并说明理由;
(2)已知f(x)为漂亮函数,判断f(x)的奇偶性;
(3)若漂亮函数f(x)满足:当x∈(0,1)时,都有f(x)>0,试判断f(x)在(-1,1)上的单调性,并给出证明.

查看答案和解析>>

同步练习册答案