精英家教网 > 高中数学 > 题目详情
16.设F1,F2为双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,求:
(1)△F1PF2的周长;
(2)△F1PF2的面积.

分析 (1)设P为右支上一点,|PF2|=m,运用双曲线的定义和勾股定理,求得m,进而得到三角形的周长;
(2)运用直角三角形的面积公式,计算即可得到所求值.

解答 解:(1)设P为右支上一点,|PF2|=m,
由双曲线的定义可得|PF1|=2a+m,
由∠F1PF2=90°,可得
m2+(2a+m)2=4c2
由双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1可得,a=2,b=2,c=2$\sqrt{2}$,
即有m2+(4+m)2=32,
解得m=2$\sqrt{3}$-2.
可得△F1PF2的周长为2c+2a+2m=4$\sqrt{3}$+4$\sqrt{2}$;
(2)△F1PF2的面积为S=$\frac{1}{2}$m(2a+m)
=$\frac{1}{2}$•(2$\sqrt{3}$-2)•(2$\sqrt{3}$+2)
=4.

点评 本题考查双曲线的定义、方程和性质,考查勾股定理和三角形的面积公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设a,b,c是正实数,满足b+c≥a,则$\frac{b}{c}+\frac{c}{a+b}$的最小值为$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线x2-y2=1的两条渐近线与抛物线y2=4x交于O,A,B三点,O为坐标原点,则|AB|等于(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距为4,离心率为$\frac{{2\sqrt{3}}}{3}$.
(1)求双曲线C的标准方程;
(2)直线l:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点C,D,如果C,D能都在以点A(0,-1)为圆心的同一个圆上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1和F2,左右顶点分别为A1和A2,过焦点F2与x轴垂直的直线和双曲线的一个交点为P,若|$\overrightarrow{P{A}_{1}}$|是|$\overrightarrow{{F}_{1}{F}_{2}}$|和|$\overrightarrow{{A}_{1}{F}_{2}}$|的等比中项,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{2}$+1D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.与椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1有相同的焦点,且经过点P($\sqrt{2}$,-$\sqrt{2}$)的双曲线的离心率为(  )
A.3B.$\sqrt{3}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则c+d=10,a+b+c+d的取值范围是(12,$\frac{25}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A={(x,y)|ax+by=1},B={(x,y)|x≥0,y≥1,x+y≤2},若A∩B≠∅恒成立,则a2+b2+2a+3b的取值范围是$[\frac{3}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{1-x}$+$\frac{1}{{\sqrt{x}}}$的定义域为(  )
A.{x|0≤x≤1}B.{x|x≥0}C.{x|x≥1,或x<0}D.{x|0<x≤1}

查看答案和解析>>

同步练习册答案