| A. | (0,3) | B. | (0,3] | C. | (0,$\frac{3}{5}$) | D. | (0,$\frac{3}{5}$] |
分析 利用函数f(x)满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,可得函数f(x)是减函数.根据分段函数建立不等式,即可确定a的取值范围.
解答 解:∵函数f(x)满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
∴函数f(x)是减函数.
∴$\left\{\begin{array}{l}{a>0}\\{a-3<0}\\{0≥a-3+4a}\end{array}\right.$,
∴0<a≤$\frac{3}{5}$,
故选:D.
点评 本题考查a的取值范围,考查函数的单调性的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2x+3x<5x} | B. | {(x,y)|y=x-1} | C. | {y|y=$\sqrt{2-x}$} | D. | {y|y=log3(-x2+2x+1)} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com