精英家教网 > 高中数学 > 题目详情
6.利用指数函数f(x)=3x的图象,作出下列函数的图象:
(1)y=f(x-1);
(2)y=f(x)-1.

分析 根据图象的平移即可得到,左加右减,上加下减.

解答 解:画出f(x)=3x的图象(虚线所示),
(1)把f(x)=3x的图象向右平移一个单位即可得到y=f(x-1)的图象(蓝色曲线); (2)把f(x)=3x的图象向下平移一个单位即可得到y=f(x)-1的图象( 红色曲线).

点评 本题考查了指数函数的图象的变化,掌握平移的法则,左加右减,上加下减,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知a,b∈R,a2+b2=1,求ab及a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数a,b满足a2+b2=1,则ab的取值范围是$[-\frac{1}{2},\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.化简y=$\sqrt{4{x}^{2}+4x+1}$+$\sqrt{4{x}^{2}-12x+9}$,并画出简图,写出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列分式不等式,并把解集在数轴上表示
(1)$\frac{5-2x}{8+5x}$>0
(2)$\frac{3-4x}{1-2x}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用lgx,lgy,lgz表示下列各式:
(1)lg(xyz); 
(2)lg$\frac{x{y}^{2}}{z}$;
(3)lg$\frac{x{y}^{3}}{\sqrt{z}}$;
(4)lg$\frac{\sqrt{x}}{{y}^{2}z}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{a(x-1)^{2}\\;x<1}\\{(a-3)x+4a\\;x≥1}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则a的取值范围是(  )
A.(0,3)B.(0,3]C.(0,$\frac{3}{5}$)D.(0,$\frac{3}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线mx+2y-6=0与直线x-y+5=0互相垂直,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,数列{log2an}是以-1为首项,-1为公差的等差数列,公差不为0的等差数列{bn}的前n项和Tn满足$\frac{{T}_{n}}{n}$=c•bn+1(其中c为常数),且b3=24.
(1)求数列{an},{bn}的通项公式以及Sn,Tn的表达式;
(2)记数列{$\frac{1}{{T}_{n}}$}的前n项和为Qn,试比较Qn与$\frac{{S}_{n}}{2}$的大小关系.

查看答案和解析>>

同步练习册答案