精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+y2=1
的左、右顶点分别为M、N,P为椭圆上任意一点,且直线PM的斜率的取值范围是[
1
2
,2],则直线PN的斜率的取值范围是(  )
A、[
1
8
1
2
]
B、[-
1
2
,-
1
8
]
C、[-8,-2]
D、[2,8]
分析:先求出M、N的坐标,设点P的坐标,则点P的坐标满足椭圆的方程,计算直线PM的斜率与直线PN的斜率之积等于定值,求出PM的斜率取最值时,PN的斜率的值,即得PN的斜率的取值范围.
解答:解:M(-2,0)、N(2,0),设点P的坐标(x,y),则有
x2
4
+y2=1
,即 y2=1-
x2
4

直线PM的斜率与直线PN的斜率之积等于 
y
x+2
×
y
x-2
=
y2
x2-4
=
1-
x2
4
x2-4
=-
1
4

∵PM的斜率的取值范围是[
1
2
,2],当PM的斜率等于
1
2
时,PN的斜率等于-
1
2

当PM的斜率等于2时,PN的斜率等于-
1
8
,∴PN的斜率的取值范围为[-
1
2
,-
1
8
],
故选B.
点评:本题考查椭圆的简单性质的应用,本题的关键是利用直线PM的斜率与直线PN的斜率之积等于定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x24
+y2=1
的左、右两个顶点分别为A,B,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2
(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+y2=1
,过E(1,0)作两条直线AB与CD分别交椭圆于A,B,C,D四点,已知kABkCD=-
1
4

(1)若AB的中点为M,CD的中点为N,求证:①kOMkON=-
1
4
为定值,并求出该定值;②直线MN过定点,并求出该定点;
(2)求四边形ACBD的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
4
+y2=1
,弦AB所在直线方程为:x+2y-2=0,现随机向椭圆内丢一粒豆子,则豆子落在图中阴影范围内的概率为
π-2
π-2

(椭圆的面积公式S=π•a•b,其中a是椭圆长半轴长,b是椭圆短半轴长)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区三模)已知椭圆
x2
4
+y2=1
的焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=90°,则点P的纵坐标可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x24
+y2=1
,过点M(-1,0)作直线l交椭圆于A,B两点,O是坐标原点.
(1)求AB中点P的轨迹方程;
(2)求△OAB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

同步练习册答案