精英家教网 > 高中数学 > 题目详情
19.在空间中,下列命题正确的是(  )
A.如果直线m∥平面α,直线n?α内,那么m∥n
B.如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C.如果平面α外的一条直线m垂直于平面α内的两条相交直线,那么m⊥α
D.如果平面α⊥平面β,任取直线m?α,那么必有m⊥β

分析 利用线面平行、平面与平面平行的判定与性质,线面垂直、平面与平面垂直的判定与性质,即可得出结论.

解答 解:对于A,直线m∥平面α,直线n?α内,则m与n可能平行,可能异面,故不正确;
对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;
对于C,根据线面垂直的判定定理可得正确;
对于D,如果平面α⊥平面β,任取直线m?α,那么可能m⊥β,也可能m和β斜交,;
故选:C.

点评 本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.计算:(log23)•(log34)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=({\sqrt{3}sinωx-cosωx})•cosωx+\frac{1}{2}$(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为$\frac{π}{4}$.
(I)求y=f(x)的单调递增区间;
(Ⅱ)在△ABC中角A、B、C的对边分别是a,b,c满足(2b-a)cosC=c•cosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,半径为R的圆形纸板上有一内接正六边形图案,将一颗豆子随机地扔到平放的纸板上,假设豆子不落在线上,则豆子落在正六边形区域的概率是(  )
A.$\frac{3}{2π}$B.$\frac{3\sqrt{3}}{2π}$C.$\frac{3}{4π}$D.$\frac{3\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn是等比数列{an}的前n项和,S2,S8,S5成等差数列
(1)求证:a1,a7,a4成等差数列
(2)若{bn}是等差数列,且b1=a1=1,b2=$\frac{1}{2{a}_{7}}$,求数列{|an|3•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m=1”是“直线(m-2)x-3my-1=0与直线(m+2)x+(m-2)y+3=0相互垂直”的(  )
A.必要而不充分条件B.充分而不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某市刑警队对警员进行技能测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)
优秀良好合格
4010525
a155
若按优秀、良好、合格三个等级分层,从中抽取40人,成绩为良好的有24人,则a等于(  )
A.10B.15C.20D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若p∨q为真命题,则下列结论不可能成立的是(  )
A.p真q真B.p假q真C.p真q假D.p假q假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列向量组中,能作为它们所在平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,0)B.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4)C.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,6)D.$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,2)

查看答案和解析>>

同步练习册答案