精英家教网 > 高中数学 > 题目详情
已知曲线C1:y=x2-1与x轴相交于A,B两点,与y轴相交于点C,圆C2经过A,B,C三点.
(1)求圆C2的方程;
(2)过点P(0,m)(m<-1)的直线l与圆C2相切,试探讨直线l与曲线C1的位置关系.
分析:(1)由题意可得A(-1,0),B(1,0),C(0,-1),得|OA|=|OB|=|OC|,从而可求圆C2的方程;
(2)由题意可知直线的斜率存在,可设其方程为y=kx+m,根据直线与圆相切,得
|m|
k2+1
=1
,即k2=m2-1
联立直线l与曲线C1的方程消元,确定方程的判别式,根据判别式,即可确定直线l与曲线C1的位置关系.
解答:解:(1)由题意可得A(-1,0),B(1,0),C(0,-1),得|OA|=|OB|=|OC|,所以圆C2的方程为x2+y2=1;
(2)由题意可知直线的斜率存在,可设其方程为y=kx+m
由直线与圆相切,得
|m|
k2+1
=1
,∴k2=m2-1
联立直线l与曲线C1的方程可得
y=kx+m
y=x2-1
,消元可得x2-kx-m-1=0
△=k2+4m+4=m2+4m+3
当△<0时,即-3<m<-1时,直线l与曲线C1没有公共点;
当△<0时,即m=-3时,直线l与曲线C1有且只有一个公共点;
当△<0时,即m<-3时,直线l与曲线C1有两个公共点.
点评:本题考查圆的标准方程,考查直线与圆的位置关系,联立方程组,利用判别式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于O,A,直线x=
1
3
与曲线C1,C2分别交于B,D.则四边形ABOD的面积S为(  )
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1:y=
1
3
x3-3x+
4
3
,曲线C2:y=x2-
9
2
x+m
,若当x∈[-2,2]时,曲线C1在曲线C2的下方,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线c1:y=ex,曲线c2:y=cosx,则由曲线c1,c2和直线x=
π
2
在第一象限所围成的封闭图形的面积为
e
π
2
-2
e
π
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

同步练习册答案