【题目】判断居民户是否小康的一个重要指标是居民户的年收入,某市从辖区内随机抽取100个居民户,对每个居民户的年收入与年结余的情况进行分析,设第i个居民户的年收入xi(万元),年结余yi(万元),经过数据处理的: =400, =100, =900, =2850.
(1)已知家庭的年结余y对年收入x具有线性相关关系,求线性回归方程;
(2)若该市的居民户年结余不低于5万,即称该居民户已达小康生活,请预测居民户达到小康生活的最低年收入应为多少万元? 附:在y=bx+a中,b= ,a= ,其中 , 为样本平均值.
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}是单调递增的数列,a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an , 数列{bn}的前n项和为Sn , 求Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣3x.
(1)求曲线y=f(x)在点x=2处的切线方程;
(2)若过点A(1,m)(m≠﹣2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别是椭圆的左、右焦点.
(1)若点是第一象限内椭圆上的一点, ,求点的坐标;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某钢厂打算租用,两种型号的火车车皮运输900吨钢材,,两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用,表示租用,两种车皮的个数.
(1)用,列出满足条件的数学关系式,并画出相应的平面区域;
(2)分别租用,两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范围;
(2)若a=1,求函数f(x)的值域.
(3)若f(x)的值域为R,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣ 与x=1时都取得极值.
(1)求a、b的值与函数f(x)的单调区间;
(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com