精英家教网 > 高中数学 > 题目详情

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足

(Ⅰ)求椭圆的标准方程;

(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

【答案】(Ⅰ);(Ⅱ).

【解析】

试题分析:(Ⅰ)先利用平面向量共线得到是线段的中点,再利用三角形的中位线和待定系数法进行求解;(Ⅱ)先利用直线与圆相切得到,再联立直线和椭圆的方程,得到关于的一元二次方程,再利用平面向量的数量积和判别式为正、三角形的面积公式得到有关表达式,再利用函数的单调性进行求解.

试题解析:(Ⅰ)因为,所以 是线段的中点,所以的中位线,又所以,所以,又因为

解得,所以椭圆的标准方程为.

(Ⅱ)因为直线相切,所以,即

联立.

因为直线与椭圆交于不同的两点

所以

,又因为,所以

解得.

,则单调递增,

所以,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年吴京执导的动作、军事电影《战狼2》上映三个月,以亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A、B、C、D的四张电影票放在编号分别为的四个不同盒子里,让四位好朋友进行猜测:

甲说:第个盒子里面放的是B,第个盒子里面放的是C;

乙说:第个盒子里面放的是B,第个盒子里面放的是D;

丙说:第个盒子里面放的是D,第个盒子里面放的是C;

丁说:第个盒子里面放的是A,第个盒子里面放的是C.

小明说:“四位朋友,你们都只说对了一半.”

可以推测,第个盒子里面放的电影票为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 命题的否定是:

B. 命题中,若,则的否命题是真命题

C. 如果为真命题,为假命题,则为真命题,为假命题

D. 是函数的最小正周期为的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51?

(2)设一次订购量为个,零件的实际出厂单价为.写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成,程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心在原点,焦点在轴上, 分别为上、下焦点,椭圆的离心率为 为椭圆上一点且

(1)若的面积为,求椭圆的标准方程;

(2)若的延长线与椭圆另一交点为,以为直径的圆过点 为椭圆上动点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正三棱柱的三视图如图所示,若该三棱柱的外接球的表面积为,则侧视图中的的值为 ( )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零数列满足.

1)求证:数列是等比数列;

2)若关于的不等式有解,求整数的最小值;

3)在数列中,是否存在首项、第项、第(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案