【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点、,当,且满足时,求的面积的取值范围.
科目:高中数学 来源: 题型:
【题目】2017年吴京执导的动作、军事电影《战狼2》上映三个月,以亿震撼世界的票房成绩圆满收官,该片也是首部跻身全球票房TOP100的中国电影.小明想约甲、乙、丙、丁四位好朋友一同去看《战狼2》,并把标识分别为A、B、C、D的四张电影票放在编号分别为,,,的四个不同盒子里,让四位好朋友进行猜测:
甲说:第个盒子里面放的是B,第个盒子里面放的是C;
乙说:第个盒子里面放的是B,第个盒子里面放的是D;
丙说:第个盒子里面放的是D,第个盒子里面放的是C;
丁说:第个盒子里面放的是A,第个盒子里面放的是C.
小明说:“四位朋友,你们都只说对了一半.”
可以推测,第个盒子里面放的电影票为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A. 命题的否定是:
B. 命题中,若,则的否命题是真命题
C. 如果为真命题,为假命题,则为真命题,为假命题
D. 是函数的最小正周期为的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为个,零件的实际出厂单价为元.写出函数的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“珠算之父”程大为是我国明代伟大数学家,他的应用数学巨著《算法统综》的问世,标志着我国的算法由筹算到珠算转变的完成,程大位在《算法统综》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上稍四节储三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明”((注)三升九:升,次第盛;盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节的容积为( )
A.升B.升C.升D.升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与轴交于点,与曲线交于点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆中心在原点,焦点在轴上, 、分别为上、下焦点,椭圆的离心率为, 为椭圆上一点且.
(1)若的面积为,求椭圆的标准方程;
(2)若的延长线与椭圆另一交点为,以为直径的圆过点, 为椭圆上动点,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零数列满足,.
(1)求证:数列是等比数列;
(2)若关于的不等式有解,求整数的最小值;
(3)在数列中,是否存在首项、第项、第项(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com