精英家教网 > 高中数学 > 题目详情
10.某校高三年级有男生220人,学籍编号1,2,…,220;女生380人,学籍编号221,222,…,600.为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),然后再从这10位学生中随机抽取3人座谈,则3人中既有男生又有女生的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{4}{5}$

分析 由题意,得到抽到的10人中,有男生4人,女生6人,再从这10位学生中随机抽取3人座谈,基本事件总数n=C${\;}_{10}^{3}$,3人中既有男生又有女生包含的基本事件个数m=${C}_{10}^{3}-{C}_{4}^{3}-{C}_{6}^{3}$,由此能求出3人中既有男生又有女生的概率.

解答 解:由题意,得到抽到的10人中,有男生4人,女生6人,
再从这10位学生中随机抽取3人座谈,
基本事件总数n=C${\;}_{10}^{3}$=120,
3人中既有男生又有女生包含的基本事件个数m=${C}_{10}^{3}-{C}_{4}^{3}-{C}_{6}^{3}$=120-4-20=96,
3人中既有男生又有女生的概率p=$\frac{m}{n}=\frac{96}{120}$=$\frac{4}{5}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}满足:a2=2,Sn-Sn-3=54(n>3),Sn=100,则n=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}、{bn}、{cn},以下两个命题:
①若{an+bn}、{bn+cn}、{an+cn}都是递增数列,则{an}、{bn}、{cn}都是递增数列;
②若{an+bn}、{bn+cn}、{an+cn}都是等差数列,则{an}、{bn}、{cn}都是等差数列;
下列判断正确的是(  )
A.①②都是真命题B.①②都是假命题
C.①是真命题,②是假命题D.①是假命题,②是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足iz=|3+4i|-i,则z的虚部是(  )
A.?-5B.?-1C.?-5iD.?-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$z=\frac{a+i}{1-i}$(其中i为虚数单位),若z为纯虚数,则实数a等于(  )
A.-1B.0C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:$\frac{1}{cos80°}$-$\frac{\sqrt{3}}{sin80°}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设P={x|x<4},Q={x|x2<4},则(  )
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b=$\sqrt{6}$,△ABC的面积为$\frac{3+\sqrt{3}}{2}$,则c=1+$\sqrt{3}$,B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD,若点P为CD的中点,且$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AE}$,则λ+μ=(  )
A.3B.$\frac{5}{2}$C.2D.1

查看答案和解析>>

同步练习册答案