精英家教网 > 高中数学 > 题目详情
4.(x3+2)(1+$\frac{1}{x}$)5的展开式中的常数项是   12.

分析 利用二项式定理展开即可得出.

解答 解:(x3+2)(1+$\frac{1}{x}$)5=(x3+2)(1+${∁}_{5}^{1}•\frac{1}{x}$+${∁}_{5}^{2}$$•\frac{1}{{x}^{2}}$+${∁}_{5}^{3}\frac{1}{{x}^{3}}$+…),
∴展开式中的常数项=2×1+${∁}_{5}^{3}$=12.
故答案为:12.

点评 本题考查了二项式定理的应用,考查了推理能力应用计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知正项等比数列{an}中,a1a5=9,S3=$\frac{21}{4}$,则log2a10的值为(  )
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法:
①分类变量A与B的随机变量x2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1,\overline y=3$,则a=1.正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}b{x^2}$+x(a,b∈R).
(Ⅰ)当a=2,b=3时,求函数f(x)极值;
(Ⅱ)设b=a+1,当0≤a≤1时,对任意x∈[0,2],都有m≥|f'(x)|恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的首项为2,且数列{an}满足${a_{n+1}}=\frac{{{a_n}-1}}{{{a_n}+1}}$,设数列{an}的前n项和为Sn,则S2017=(  )
A.-586B.-588C.-590D.-504

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的渐近线方程是y=±$\frac{4}{3}$x,则其准线方程为x=±$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E的中心在坐标原点,以坐标轴为对称轴,其右焦点为F(1,0),点A(0,1)在椭圆上,过点A作两条直线,与椭圆E分别交于M,N两点,直线AM,AN的斜率乘积为-1.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)求证:直线MN过定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知a=6,b=5,c=4,则△ABC的面积为$\frac{15\sqrt{7}}{4}$.

查看答案和解析>>

同步练习册答案